首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the electrical conduction and breakdown characteristics of thin-wall ceramic spacers for a field emission display (FED). These spacers bridge two thin-film electrodes, which represent the FED cathode and the phosphor anode in a FED. Techniques to set up a high aspect-ratio thin-wall spacer without glue were developed. An extra-low light detection 3D-imaging system using an intensified CCD camera was developed which was able to identify the location of low-level light activity in the stressed vacuum-gap, indicative of imminent device failure. Thin wall spacers made of various ceramics were investigated extensively. The scanning electron microscopy (SEM) surface investigation showed that zirconia spacers exhibited a smoother surface morphology compared to all other materials studied; however, their breakdown voltages were rather low. The breakdown voltages of alumina spacers were severely limited by triple junction effects. At HV, breakdown at the edge of the thin-film electrode was observed. This edge breakdown can be used to explain the saturation of the breakdown voltage vs. vacuum gap spacing. The results of this work are highly encouraging in that an ~1000 μm tall spacer can support ~18 kV dc, at least 80% above the expected operational voltage of HV FED. The spacer breakdown voltage is expected to improve through surface treatment and elimination of the electrode edge-breakdown and triple junction effects  相似文献   

2.
气压湿度对负直流电晕特性影响的研究   总被引:10,自引:3,他引:7  
为得到负直流电晕特性随着气压湿度的变化规律,建立了考虑气压湿度影响的负直流电晕起始电压的物理模型,利用模拟电荷法和计算表面光电子数目的方法求解了负直流电晕起始电压。在人工气候罐中,利用棒–板电极,测量了不同气压湿度下的负直流电晕起始电压和电晕电流。计算和试验结果表明:电晕起始电压随气压下降、湿度升高而减小,主要原因分别是有效电离系数增大导致的电离区域的扩大和高场强区域内碰撞电离能力的增强。当直流电压和电晕起始电压的比值一定时,电晕电流随气压下降、湿度升高而减小;当直流电压一定时,电晕电流随气压降低而增大,随湿度升高而减小。电晕电流和直流电压、电晕起始电压关系式中的系数C随湿度增大的不同变化趋势和正负离子与水分子结合状态的差异有关。  相似文献   

3.
设计了一套在0.1 MPa氦气和空气环境下测试绝缘系统电气绝缘性能的试验装置,完成了0.1 MPa气压下氦气和空气中主氦风机驱动电机绝缘系统模型的局部放电起始电压(PDIV)、起晕电压、匝间冲击、绝缘电阻和工频击穿电压对比试验。试验结果表明:在0.1 MPa气压下,绝缘系统在氦气环境下的部分绝缘性能较空气中大幅下降,氦气环境下绝缘系统的PDIV值约为空气中的50%,起晕电压值约为空气中的20%~25%,闪络(击穿)电压约为空气中的50%。  相似文献   

4.
空气间隙的击穿电压与放电起始前的电场分布特征存在多维非线性关系。为了实现空气间隙的击穿电压预测,以电场特征集作为输入,以间隙在加载电压下是否击穿作为输出,采用支持向量分类机建立击穿电压预测模型。针对极不均匀电场空气间隙的击穿特性受电晕影响的问题,提出两种修正方法:通过增加受电晕影响的训练样本数据,提高预测模型的泛化性能;或基于"电晕云"的思想进行二次电场计算及特征量提取,对预测模型的输入特征进行修正。采用修正后的模型对极不均匀电场下棒-板间隙的工频击穿电压及棒-板长空气间隙的操作冲击放电电压进行预测,预测值与试验值吻合良好。该方法有利于减少试验次数,降低试验成本。  相似文献   

5.
冰凌针-板间隙直流正极性下起始电晕特性的研究   总被引:1,自引:2,他引:1  
覆冰是电力系统的严重自然灾害之一。覆冰绝缘子伞裙间隙未桥接时,冰凌尖端的放电是影响绝缘子闪络电压的主要因素之一。选择冰柱-冰板间隙模型,借助于紫外线成像仪等设备,在人工气候室内研究了冰凌-冰板模型的电晕特性,提出了用紫外线成像仪确定冰凌-冰板起晕电压的方法, 分析了影响冰凌起晕电压的因素。结果表明:冰凌-冰板间隙起晕电压与冰凌状态有关,湿冰的起晕电压较低,干冰的起晕电压较高;间隙较长,起晕电压较高;气压较低,起晕电压较低;冰凌起晕电压与覆冰水电导率没有明显关系。  相似文献   

6.
为了获得复合电压作用下电极的起晕特性,在室内搭建了复合电压下无锈棒-板电极起晕特性实验平台,采用串联的复合加压方式,即一个电极上施加直流电压,另一个电极上施加交流电压,以紫外光子计数的突变作为电晕起始判据,获得了直流和交流复合电压下的电极起晕特性。同时对比了不同直流电压极性、电极加压方式和不同复合电压升压方式下电极起晕电压的特点,探究复合电压下棒电极半径和棒板间隙对电极起晕电压的影响。实验结果表明:在相同的大气条件及电极布置下,由于空间电荷影响,棒电极正直流、板电极交流加压方式下的起晕电压比棒电极交流、板电极正直流加压方式下的起晕电压高;在棒-板气隙间距0~5cm范围内,定直变交复合升压方式下,交直流分量有效值叠加后的起晕电压随着直流分量的增加而升高,定交变直方式下,该值随着交流分量的增加而下降,且交直流分量间互为线性关系。本文的研究成果可以为进一步研究复合电压作用下电极的电晕机理及起晕电压的准确预测奠定坚实基础。  相似文献   

7.
DC pre-breakdown phenomena and breakdown characteristics in the presence of free conducting particles in liquid nitrogen are studied experimentally. The results show that a microdischarge occurs when a charged particle is approaching an oppositely charged electrode. An intense microdischarge can trigger a complete breakdown of the gap. The breakdown voltage of a uniform field gap with a free metallic particle of mm size might be reduced well below that of a point-to-plane gap without a particle in liquid nitrogen. Heavy contamination by a metallic powder produces a large reduction in the breakdown voltage with a horizontal spacer surface. However carbon powder is less hazardous compared to metallic powder  相似文献   

8.
It is a well known fact that the breakdown voltage of an insulating liquid increases nonlinearly with increasing electrode gap. Under nonuniform field dc conditions two breakdown voltages are determined depending on the electrode polarity. Using point-plane geometries, with gaps of 5 mm or larger, one finds that typical transformer oils have higher breakdown voltages when the point is negative than when it is positive. Recently, perfluorinated polyethers have been found to produce opposite results when using average gap sizes of 5 to 10 mm. To elucidate this situation a study of the effect of gap size on breakdown voltage has been undertaken. The results show that for the polyethers at larger gaps the sequence is reversed. These observations are explained in terms of the respective streamer developments in these liquids and the relative stability of their negative ions. In the case of the conventional hydrocarbon type oils, the positive streamer usually grows slightly faster than the negative one, but the streamer inception voltages of both are rather similar. In the case of perfluorinated polyethers the positive streamers move at least 10× faster than the negative ones, but they require much higher inception voltages than negative ones. At gaps ≳12 mm and the associated higher applied voltages this breakdown at negative polarity occurs at higher voltages than at the positive one. The negative ions of the perfluoro compounds are much more stable than those of conventional hydrocarbons. The discharge of the negatively charged perfluoro ions requires much higher fields than do those of conventional hydrocarbons. The implications of these observations are discussed in some detail  相似文献   

9.
Corona inception voltage due to a water droplet on epoxy resin in an electrode gap is high under DC voltage compared to AC voltage. It is observed that, as the contact angle of the epoxy nanocomposite material becomes higher, the corona discharge inception voltage increases. The droplet movement is observed, using a high‐speed camera, on application of the voltage. It is seen that a droplet moves toward the ground electrode under an AC or a negative DC voltage, whereas it moves toward the high‐voltage electrode under a positive DC voltage. It is also observed that carbonization occurs near the ground electrode under AC and negative DC voltages, and near the high‐voltage electrode under a positive DC voltage. During the evaporation of the water droplet (during arcing) on the surface of the insulating material under AC and DC voltages, carbonization of material occurs and is high both in pure epoxy resin and in nanocomposites with 5 wt% epoxy clay. The magnitude of the arcing current is nearly the same irrespective of the percentage of clay in the epoxy nanocomposites. The magnitude of discharge current flow is high under negative DC voltage compared to positive DC/AC voltages. The rise time of injected current pulses, at the time of corona inception and during arcing, under AC/DC voltages, is a few nanoseconds. Ultrahigh‐frequency signals were emitted as a result of the corona discharge from the water droplet on epoxy nanocomposites and at the time of arcing between the droplets and the electrodes, both under AC and DC voltages, with its dominant frequency in the range 1–2 GHz. © 2013 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

10.
冰棒—冰板间隙负极性电晕起始放电特性   总被引:3,自引:2,他引:1  
国内外研究结果表明,绝缘子覆冰过程的一个显著现象是:在带电情况下,其表面冰凌并未完全桥接,而是在伞裙间形成一定的冰棱空气间隙。为研究这种空气间隙对放电发展的影响,利用冰棒-冰板空气间隙放电模型在人工气候室内进行了负极性直流电晕放电试验,并分析了不同间隙距离、不同大气压、不同覆冰类型(包括冰的表面状态以及覆冰水电导率)情况下的电晕起始放电特性。研究结果表明:随着空气间隙长度的减小和气压的降低,负极性电晕起始电压也明显下降;湿冰时的电晕起始电压高于干冰时的电晕起始电压。这些研究结果为进一步深入开展覆冰电极系统的电晕放电机理和覆冰绝缘子闪络研究打下了基础。  相似文献   

11.
In measurements on Teflon FEP films charged in ⩽50 μm air gaps by microsecond impulse voltages, a uniform charge deposition on the films was observed. A regular increase of the film surface potential from a threshold value of the peak impulse voltage was found. However, for 300 μm air gap it was observed that abrupt charging occurs at a lower threshold voltage, indicating breakdown, and the charge deposition on the film becomes nonuniform. The behavior in air gaps <50 μm is explained here using Townsend's theory of pre-discharges. It is shown how and why the interposed insulating film acts to make the system self-controlled, thus avoiding breakdown in the air gap, despite the large values of the applied peak impulse voltage  相似文献   

12.
Breakdown voltages in uniform and quasi-uniform field gaps are sensitive to the presence of small protrusion on the electrode surface in SF6 at high pressures. The aim of the present work is to study direct breakdown and corona stabilized breakdown for the transitive region from uniform to nonuniform gap in dry air and SF6 at low pressures up to a critical pressure when direct breakdown takes place by a leader discharge crossing the gap in SF6. In a parallel-plane gap with a variable-height protrusion subjected to the dc voltage, corona onset voltage is remarkably controlled by the protrusion height. The present electrode arrangement has the advantage of directly measuring the minimum critical guiding field strength for the propagation of a streamer discharge at corona onset. The experimental observations have been explained qualitatively on the basis of a streamer model and precise electric field calculations of gap.  相似文献   

13.
Laser-induced breakdown of nonuniform field gaps in atmospheric air was caused by an XeCl excimer laser. This laser beam was focused on the center of a rod-to-plane, needle-to-plane or hemisphere-to-plane gap with dc voltage. The laser energy dependency of breakdown voltage was investigated for positive and negative applied voltages and gap lengths of 15 to 25 mm. It was found that the positive breakdown voltage was higher than the negative one in the hemisphere-to-plane gaps or the rod-to-plane gaps with low voltages, where there is little or no space charge. However, the effect of polarity is reversed in the rod-to-plane gaps with large spacings and the needle-to-plane gaps. On the basis of the dependence of the discharge mode on this polarity effect, it can be seen that it was caused by the difference in development of positive and negative streamers in the corona discharge  相似文献   

14.
The aim of this paper was to give an overview on partial discharges under oscillating impulse voltage.Three models(void in solid,needle-plate in air and oil) were presented,which describe the stochastic discharge process and represent internal discharges in solids and corona in air or silicon oil.Moreover,an air cored Rogowski coil and a sampling resistor for partial discharge(PD) measurement were developed and introduced in this paper.PD inception and extinction voltages(PDIV,PDEV) under single oscillating impulse voltage and AC voltage were investigated with different test samples.Experimental results firstly revealed that the PD inception voltage(PDIV) decreased with increasing applied voltage;secondly the PD inception voltage for three different insulating materials,showed an escalating trend with increasing frequency of the applied voltage.It was proven that the characteristics of PD under oscillating impulse voltage were identical to the features under AC voltage,which could be measured with the phase resolved partial discharge analysis(PRPDA) technique.Based on the reorganization and analysis of PDs under oscillating impulse voltage,the information about insulation defects was extracted from the measured data and used for estimating the risk of insulation failure of the equipment.  相似文献   

15.
The factors affecting corona formation on twin-point/plane gaps are investigated both theoretically and experimentally. In the theoretical analysis, an electrostatic field computation program based on the charge simulation method was used to get the electric field profile on the plate for different gap lengths and interspacings between the two points. Also, the effect of voltage level, air pressure and gap length on the number of axial streamers occurring across the critical field line was introduced for a constant time duration. The variation of the integral of the ionization coefficient with the axial length from the point was studied. Finally, a study of the effect of air pressure and gap length on both the corona inception voltage and critical length was presented. Corona formation in single and twin-point/plane gaps also was investigated experimentally under both high direct and alternating voltages. There are many factors affecting such corona formation. The investigated factors were the interspacing between the two points, gap length between the point and the plane, ambient temperature, relative humidity, polarity or frequency of the applied voltage, and electrode material. In order to study and explain such phenomena, a photographic investigation together with a simultaneous measurement of both the applied voltage and the corona current were introduced. Curve fitting of the dc corona current vs. gap length and voltage for both single and twin-point/plane gaps gave the conventional relationship, but in case of twin point the power of the gap length varies between 1.2 and 1.3  相似文献   

16.
Two different spacer designs, a disc spacer and a composite-profile cone, were evaluated in a coaxial conductor 2.5/7 cm in diameter to study their influence on the V-t characteristic of the conductor when it is subjected to repeated applications of impulse voltages of constant waveshape and increasing magnitude. The results show that an insulating spacer can reduce the critical withstand voltage and yield smaller dispersion in the breakdown voltages. These effects can be minimized by adopting a design that favors breakdown in the gas rather than along the spacer interface  相似文献   

17.
Particle-initiated breakdown characteristics in SF6 gas are investigated. Breakdown voltages are greatly influenced by particle diameter especially for AC voltages, and for very fine metallic wire particles are much higher than those for moderately thick ones. The breakdown stress of a gas gap is obtained as a function of particle length and can be estimated fairly well by assuming a corona stabilizing zone. For a spacer, the electric stress which is parallel to its surface dominates surface breakdowns and the relation between the stress and particle length is experimentally determined. In order to increase breakdown voltages, the effects of both the dielectric coating on a high-voltage electrode and spacer shape are examined. Finally, the effectiveness of the dielectric coating on a grounded electrode is demonstrated to prevent particle levitation.  相似文献   

18.
研究了非均匀电场中的静态模拟气固两相体放电的击穿、起晕特性及固相物介电常数、占空比、放电间隙、电压极性和种类对击穿电压与起晕电压的影响。结果表明:实验范围内,正极性大占空比时,随放电间隙的增加,两相体的起晕电压逐渐低于空气的起晕电压。正极性和交流电压下,两相体的击穿电压比空气高。  相似文献   

19.
张乔根  顾温国 《高压电器》1996,32(4):24-27,40
研究了SF_6气体中绝缘子表面具有固定金属导电微粒时,在不同短波头冲击电压作用下的闪络特性,同时研究了电晕起始电压和SF_6气压对闪络电压的影响。研究表明,极不均匀场中SF_6绝缘固体介质表面在陡波作用下的闪络特性不同于气体间隙,其原因可能是位移电流的作用。  相似文献   

20.
The breakdown voltages of the longer‐gap configurations in gaseous nitrogen and air that are necessary in designing superconducting electrical power apparatuses are measured at temperatures of 293 and 93 K. The quasi‐uniform electric field made by a sphere‐to‐sphere electrode with a diameter of 150 mm and a gap length of about 10 to 100 mm is used in the measurement of the breakdown voltages. When 50‐Hz ac and dc voltages are applied to the sphere‐to‐sphere gap, the breakdown voltages in nitrogen and air obey Paschen's law even at cryogenic temperatures (93 K). When a 1.4/50‐μs lightning impulse voltage is applied to the gap, the 50% breakdown voltage of nitrogen also obeys Paschen's law under UV irradiation of the cathode electrode. However, the breakdown voltage in air at 93 K is higher in the case of lightning impulse voltage applications, and the delay from impulse voltage application to breakdown occurrence is apparently longer at 93 K than at 293 K. © 2000 Scripta Technica, Electr Eng Jpn, 132(4): 28–33, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号