首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perregaux and Gabel (Perregaux, D., and Gabel, C. A. (1994) J. Biol. Chem. 269, 15195-15203) reported that potassium depletion of lipopolysaccharide-stimulated mouse macrophages induced by the potassium ionophore, nigericin, leads to the rapid release of mature interleukin-1beta (IL-1beta). We have now shown a similar phenomenon in lipopolysaccharide-stimulated human monocytic leukemia THP-1 cells. Rapid secretion of mature, 17-kDa IL-1beta occurred, in the presence of nigericin (4-16 microM). No effects on the release of tumor necrosis factor-alpha, IL-6, or proIL-1beta were seen. Addition of the irreversible interleukin-1beta-converting enzyme (ICE) inhibitor, Z-Val-Ala-Asp-dichlorobenzoate, or a radicicol analog, inhibited nigericin-induced mature IL-1beta release and activation of p45 ICE precursor. The radicicol analog itself did not inhibit ICE, but markedly, and very rapidly depleted intracellular levels of 31-kDa proIL-1beta. By contrast, dexamethasone, cycloheximide, and the Na+/H+ antiporter inhibitor, 5-(N-ethyl-N-isopropyl)amiloride, had no effect on nigericin-induced release of IL-1beta. We have therefore shown conclusively, for the first time, that nigericin-induced release of IL-1beta is dependent upon activation of p45 ICE processing. So far, the mechanism by which reduced intracellular potassium ion concentration triggers p45 ICE processing is not known, but further investigation in this area could lead to the discovery of novel molecular targets whereby control of IL-1beta production might be effected.  相似文献   

2.
Human skin equivalents (HSEs) were used as a model to investigate interleukin (IL)-1 alpha and IL-1 beta secretions by keratinocytes stimulated by Sarcoptes scabiei (SS). SS mites burrowed into the stratum corneum when placed on the surface of cultured HSEs. Mites lived for 14 days. Mites and mite products induced cells in the HSEs to secrete IL-1 alpha and IL-1 beta within 16 hr. Scabies mites induced production of greater amounts of IL-1 alpha than IL-1 beta. Hepatocyte growth factor in the culture medium at 3 and 30 ng/ml upregulated the secretions of both IL-1 alpha and IL-1 beta by mite-infested skin equivalents, whereas 10 ng/ml of IL-6 upregulated production of only IL-1 beta. Therefore, these cytokines were important immunomodulating factors influencing keratinocyte secretion of IL-1 alpha and IL-1 beta in vitro. The results of this study provide the first evidence that keratinocytes (possibly fibroblasts) in the skin produce these cytokines in response to scabies mites or other ectoparasitic arthropods. Because IL-1 alpha and IL-1 beta are potent inducers of inflammation and keratinocytes are among the first effector cells to encounter scabies mites and their products, these cells may be key initiators of the inflammatory/immune reaction to scabies.  相似文献   

3.
Procytokine processing by caspase-1 is required for the maturation and release of IL-1beta and IFN-gamma-inducing factor (IGIF) (or IL-18) from activated macrophages (Mphi). Nitric oxide (NO) has emerged as a potent inhibitor of cysteine proteases. Here, we tested the hypothesis that NO regulates cytokine release by inhibiting IL-1beta-converting enzyme (ICE) or caspase-1 activity. Activated RAW264.7 cells released four to five times more IL-1beta, but not TNF-alpha, in the presence of the NO synthase inhibitor N(G)-monomethyl-L-arginine. Stimulated peritoneal Mphi from wild-type mice (inducible NO synthase (iNOS)+/+) also released more IL-1beta if exposed to N(G)-monomethyl-L-arginine, whereas Mphi from iNOS knockout mice (iNOS-/-) did not. Inhibition of NO synthesis in stimulated RAW264.7 cells also resulted in a threefold increase in intracellular caspase-1 activity. The NO donor S-nitroso-N-acetyl-DL-penicillamine inhibited caspase-1 activity in cells as well as the activity of purified recombinant caspase-1 and also prevented the cleavage of pro-IL-1beta and pro-IGIF by recombinant caspase-1. The inhibition of caspase-1 by NO was reversible by the addition of DTT, which is consistent with S-nitrosylation as the mechanism of caspase-1 inhibition. An in vivo role for the regulation of caspase-1 by NO was established in iNOS knockout animals, which exhibited significantly higher plasma levels of IL-1beta and IFN-gamma than their wild-type counterparts at 10 h following LPS injection. Taken together, these data indicate that NO suppresses IL-1beta and IGIF processing by inhibiting caspase-1 activity, providing evidence for a unique role for induced NO in regulating IL-1beta and IGIF release.  相似文献   

4.
5.
6.
Interferon-gamma-inducing factor (IGIF, interleukin-18) is a recently described cytokine that shares structural features with the interleukin-1 (IL-1) family of proteins and functional properties with IL-12. Like IL-12, IGIF is a potent inducer of interferon (IFN)-gamma from T cells and natural killer cells. IGIF is synthesized as a biologically inactive precursor molecule (proIGIF). The cellular production of IL-1beta, a cytokine implicated in a variety of inflammatory diseases, requires cleavage of its precursor (proIL-1beta) at an Asp-X site by interleukin-1beta-converting enzyme (ICE, recently termed caspase-1). The Asp-X sequence at the putative processing site in proIGIF suggests that a protease such as caspase-1 might be involved in the maturation of IGIF. Here we demonstrate that caspase-1 processes proIGIF and proIL-1beta with equivalent efficiencies in vitro. A selective caspase-1 inhibitor blocks both lipopolysaccharide-induced IL-1beta and IFN-gamma production from human mononuclear cells. Furthermore, caspase-1-deficient mice are defective in lipopolysaccharide-induced IFN-gamma production. Our results thus implicate caspase-1 in the physiological production of IGIF and demonstrate that it plays a critical role in the regulation of multiple proinflammatory cytokines. Specific caspase-1 inhibitors would provide a new class of anti-inflammatory drugs with multipotent action.  相似文献   

7.
Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis   总被引:1,自引:0,他引:1  
The Fas/APO-1 receptor is one of the major regulators of apoptosis. We report here that Fas/APO-1-mediated apoptosis requires the activation of a new class of cysteine proteases, including interleukin-1 beta-converting enzyme (ICE), which are homologous to the product of the Caenorhabditis elegans cell-death gene ced-3 (refs 11, 12). Triggering of Fas/APO-1 rapidly stimulated the proteolytic activity of ICE. Overexpression of ICE, achieved by electroporation and microinjection, strongly potentiated Fas/APO-1-mediated cell death. In addition, inhibition of ICE activity by protease inhibitors, as well as by transient expression of the pox virus-derived serpin inhibitor CrmA or an antisense ICE construct, substantially suppressed Fas/APO-1-triggered cell death. We conclude that activation of ICE or an ICE-related protease is a critical event in Fas/APO-1-mediated cell death.  相似文献   

8.
IL-1 beta is a potent modulator of immune and inflammatory responses. Murine IL-1 beta is initially synthesized as an inactive 33-kDa pro-molecule that is activated by proteolytic cleavage between Asp-117 and Val-118 to generate the 17-kDa mature IL-1 beta protein. This cleavage is catalyzed by a specific protease that has been designated the IL-1 beta converting enzyme (or IL-1 beta convertase). We have used a human IL-1 beta convertase cDNA to isolate murine convertase cDNA from a WEHI-3 library. These cDNA predicted that the murine convertase is a 402-residue protein. Overall, the murine convertase showed 71% nucleotide and 62% predicted amino acid sequence identity with the human convertase. Southern blot analysis of interspecific backcross mice indicated that the murine IL-1 beta convertase is encoded by a single copy gene located on murine chromosome 9. The murine convertase showed broad constitutive expression, being detected in mononuclear phagocyte and T lymphocyte cell lines as well as in spleen, heart, brain, and adrenal glands. The expression of the murine convertase in mononuclear phagocytes was up-regulated by treatment with LPS or rIFN-gamma. These studies establish that the IL-1 beta convertase is an evolutionarily conserved, widely expressed enzyme that can be regulated at a pretranslational level.  相似文献   

9.
Interleukin-1beta-converting enzyme (ICE) is believed to be one of the key proteases involved in apoptosis. Since the precursor form of interleukin-1beta (pre-IL-1beta) is one of the well known substrates for ICE, and a potassium/proton ionophore, nigericin, enhances IL-1beta processing, the authors hypothesized that nigericin induces apoptosis through the activation of ICE. In a lipopolysaccharide (LPS)-stimulated and nigericin-treated human monocytic cell line, THP-1, apoptosis was induced, as assessed as to a decrease in cell size, chromatin condensation, exposure of phosphatidylserine and DNA fragmentation. Under exactly the same conditions, nigericin also induced IL-1beta processing in these cells, which was significantly inhibited by an ICE inhibitor, acetyl-Tyr-Val-Ala-Asp-CHO. On the contrary, treatment with this inhibitor at the same concentration did not inhibit nigericin-induced apoptosis, assessed as to the decrease in cell size, chromatin condensation and DNA fragmentation. Although apoptosis induced by nigericin was also observed for LPS-stimulated human peripheral blood mononuclear cells and a mouse T lymphoma cell line, EL-4, the ICE inhibitor did not inhibit the apoptosis in the cells. These results suggest that activated ICE is not involved in the apoptosis induced by nigericin. Since apopain activity was not augmented under the same conditions, neither ICE nor apopain may play any role in the nigericin-induced apoptosis.  相似文献   

10.
CPP32, a member of the interleukin-1beta-converting enzyme (ICE) family of cysteine proteases, cleaves poly(ADP-ribose) polymerase and sterol regulatory element binding proteins during apoptosis. CPP32 normally exists in the cytosol as a 32-kDa inactive precursor and only becomes activated when cells are undergoing apoptosis. The activation is a proteolytic event that generates a p20/p11 heterodimer. We report here the identification, purification, and characterization of a hamster CPP32-activating protease (CAP) that cleaves and activates CPP32. The biochemical properties of CAP suggest that it is another member of the ICE family of proteases. Purified CAP consists of two prominent polypeptides of 19 and 13 kDa. Protein sequencing revealed that CAP is derived from the hamster homolog of Mch2alpha, a member of the ICE family recently identified based on the sequence conservation among the ICE family members. CAP activity is inhibited by CrmA, a cowpox virus protein that prevents host cell apoptosis. CAP itself is also activated through proteolytic cleavage. These data are consistent with the idea that the activation of the ICE family of proteases during apoptosis proceeds through a cascade of proteolytic events.  相似文献   

11.
Shigella, the etiological agent of bacillary dysentery, rapidly kills human monocyte-derived macrophages in vitro. Wild-type Shigella flexneri, but not a nonvirulent derivative, induced human macrophage apoptosis as determined by morphology and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL). Shigella-mediated macrophage cell death was blocked by the peptide inhibitors of caspases, acetyl-Tyr-Val-Ala-Asp-aldehyde (acetyl-YVAD-CHO) and acetyl-Tyr-Val-Ala-Asp-chloromethylketone (acetyl-YVAD-CMK). Protection from apoptosis by YVAD was observed in monocytes matured in the presence or absence of colony-stimulating factors (CSF) like macrophage-CSF or granulocyte-macrophage-CSF. Furthermore, lipopolysaccharide (LPS) or gamma interferon (IFN-gamma) rendered human macrophages partially resistant to Shigella cytotoxicity. Macrophages stimulated with either LPS or IFN-gamma were also protected by YVAD from Shigella-induced cell death. During Shigella infections of human macrophages, interleukin-1beta (IL-1beta) was cleaved to the mature form. IL-1beta maturation was severely retarded by YVAD, indicating that IL-1beta-converting enzyme (ICE; caspase 1) is activated in Shigella-induced apoptosis. The finding that Shigella induces apoptosis in human macrophages by activating ICE supports the hypothesis that the acute inflammation characteristic of shigellosis is initially triggered by apoptotic macrophages which release mature IL-1beta during programmed cell death.  相似文献   

12.
Fas-mediated apoptosis has been shown to be mediated by the IL-1beta converting enzyme (ICE) pathway. To determine the relationship between ICE and its substrate IL-1beta, we examined six human cell lines for susceptibility to Fas-mediated apoptosis and Fas induction of ICE-like activity. The human B lymphoblastoid cell line SKW6.4 and the human T lymphoma cell lines Jurkat, CEM-6, H-9, and MOLT4 were susceptible to Fas-mediated apoptosis, whereas the human promyelocytic leukemia cell line HL-60 was resistant to Fas-mediated apoptosis. ICE mRNA was highly expressed in SKW6.4, H-9, and HL-60 cells, and ICE-like activity increased during Fas-mediated apoptosis in SKW6.4 cells. In contrast, IL-1beta mRNA was highly expressed only in HL-60 cells. Acetyl-Tyr-Val-Ala-Asp-chloromethylketone, a tetrapeptidyl inhibitor of ICE, prevented Fas-mediated apoptosis strongly in SKW6.4 and H-9 cells but weakly or marginally in other cells. To examine whether intracellular IL-1beta is a proteolytic substrate or an endogenous competitive inhibitor against other substrates for Fas-ICE-mediated apoptosis in SKW6.4 cells, we established precursor IL-1beta transfectant clones using SKW6.4 cells. We demonstrated that stably transfected SKW6.4 cells expressing precursor IL-1beta, but not cells transfected with the empty vector, exhibited resistance to Fas-mediated apoptosis due to competitive inhibition of ICE-like activity, which was associated with increased cleavage of precursor IL-1beta to mature IL-1beta. These results suggest that Fas-mediated apoptosis is mediated by ICE cleavage of proteolytic substrates other than IL-1beta and that IL-1beta is an endogenous inhibitor of Fas-mediated apoptosis.  相似文献   

13.
Macrophages are present in inflammatory tissue sites where abnormal degradation of the extracellular matrix takes place. To evaluate the potential of macrophages to participate in such matrix destruction, we studied the effects of three cytokines present in inflammatory tissue sites, TNF-alpha, IL-1beta, and IFN-gamma, on the production of three matrix-degrading metalloproteinases, interstitial collagenase, stromelysin, and 92-kDa gelatinase, as well as their natural inhibitor, TIMP-1 (tissue inhibitor of metalloproteinases number 1), by human monocyte-derived macrophages differentiated in vitro. Spontaneous production of interstitial collagenase and stromelysin by these cells was minimal, and was not influenced by the cytokines. In contrast, the cells secreted substantial basal amounts of 92-kDa gelatinase, the secretion of which was stimulated (2- to 15-fold; on average 5-fold) by both TNF-alpha and IL-1beta, while the production of TIMP-1 was unaffected. IFN-gamma suppressed the production of the 92-kDa gelatinase induced by TNF-alpha- and IL-1beta. TNF-alpha and IL-1beta regulated the expression of 92-kDa gelatinase by monocyte-derived macrophages at the pretranslational level. The results show that expression of 92-kDa gelatinase, but not its natural inhibitor TIMP-1, by human tissue-type macrophages is selectively up-regulated by proinflammatory cytokines; which suggests that these cells, when actually present in an inflammatory environment, will actively participate in the destruction of the extracellular matrix.  相似文献   

14.
Both IL-1 alpha and IL-1 beta lack an N terminus secretory sequence, and the mechanism of secretion of these pleiotropic cytokines is incompletely understood. The epidermis contains large quantities of IL-1 alpha in keratinocytes, which may play a role in inducing endothelial adhesion molecules and promoting extravasation of leukocytes. Here we report that mechanical deformation of human keratinocytes leads to rapid release of IL-1 alpha, possibly through transient disruptions in the plasma membrane. Using a device that precisely controls the amplitude of strain on the culture substrate, we found by pulse-chase analysis, Western analysis, and ELISA that the release of IL-1 alpha is dependent on the amplitude of the strain. A cyclic strain of 14% released a small but significant quantity of IL-1 alpha, while strains of 33% released 66 +/- 9% of cytoplasmic IL-1 alpha over 1 h (p < 0.001). Release of IL-1 alpha was accompanied by rapid release of large stores of IL-1R antagonist, approximately 25 to 30 times greater by mass than the quantity of IL-1 alpha released, but only a small fraction of cytoplasmic lactate dehydrogenase. Media conditioned by mechanically stimulated keratinocytes induced expression of E-selectin by human vascular endothelial cells; induction of E-selectin was completely inhibited by an Ab to IL-1 alpha. Therefore, mechanical strain promotes the secretion of IL-1 alpha, and deformation of keratinocytes in the epidermis may activate vascular endothelium through mechanically released IL-1 alpha. This pathophysiologic mechanism may play a role in the anatomic localization of some inflammatory skin diseases, such as psoriasis, which occurs more commonly in locations where the dermis is subjected to repetitive stretch or trauma.  相似文献   

15.
16.
17.
Our previous study demonstrated that IL-2 suppressed growth of human T cell lines, in which the suppression was observed with members among HTLV-I-infected T cell lines independent of IL-2 for growth. In this study, we examined the molecular mechanism of IL-2-induced growth suppression with two HTLV-I-infected T cell lines; TL-OmI expressing endogenously three subunits, i.e. alpha, beta and gamma chains, of the IL-2 receptor, and an MT-1 transfectant expressing the endogenous alpha and gamma chains and exogenous beta chain. Our analysis revealed that IL-2 induced apoptosis in both T cell lines. Experiments with inhibitors for the proteases responsible for apoptosis signals showed that caspase 1 (IL-1 beta-converting enzyme) was not involved in apoptosis induced by IL-2. Other MT-1 sublines introduced with mutant beta chains demonstrated that IL-2-induced apoptosis required signals from both the serine-rich (S) region and acidic (A) region of the IL-2 receptor beta chain, which are essential but not critical for IL-2-mediated cell growth respectively. Collectively, IL-2 functions not only on growth promotion and prevention of apoptosis but also on induction of apoptosis, which may be implicated in physiological regulation of immune reactions by controlling growth and activation of T cells.  相似文献   

18.
19.
Bcl-2 oncogene expression plays a role in the establishment of persistent viral infection by blocking virus-induced apoptosis. This might be achieved by preventing virus-induced activation of caspase-3, an IL-1beta-converting enzyme (ICE)-like cysteine protease that has been implicated in the death effector phase of apoptosis. Contrary to this model, we show that three cell types highly overexpressing functional Bcl-2 displayed caspase-3 activation and underwent apoptosis in response to infection with alphaviruses Semliki Forest and Sindbis as efficiently as vector control counterparts. In all three cell types, overexpressed 26 kDa Bcl-2 was cleaved into a 23 kDa protein. Antibody epitope mapping revealed that cleavage occurred at one or two target sites for caspases within the amino acid region YEWD31 (downward arrow) AGD34 (downward arrow) A, removing the N-terminal BH4 region known to be essential for the death-protective activity of Bcl-2. Preincubation of cells with the caspase inhibitor Z-VAD prevented Bcl-2 cleavage and partially restored the protective activity of Bcl-2 against virus-induced apoptosis. Moreover, a murine Bcl-2 mutant having Asp31, Asp34 and Asp36 substituted by Glu was resistant to proteolytic cleavage and abrogated apoptosis following virus infection. These findings indicate that alphaviruses can trigger a caspase-mediated inactivation of Bcl-2 in order to evade the death protection imposed by this survival factor.  相似文献   

20.
Interleukin-16, a proinflammatory cytokine produced in CD8(+) lymphocytes, is synthesized as a precursor protein (pro-IL-16). It is postulated that the C-terminal region of pro-IL-16 is cleaved, releasing bioactive IL-16. To characterize IL-16 cleavage, we transfected COS cells with a cDNA encoding a approximately 50-kDa form of pro-IL-16. Transfected COS cells released a approximately 20-kDa IL-16 cleavage product shown to consist of the 121 C-terminal residues of pro-IL-16 by immunoblotting and amino acid sequencing. Cleaved IL-16, but not pro-IL-16, exhibited lymphocyte chemoattractant activity. A C-terminal approximately 20-kDa IL-16 polypeptide was also released when pro-IL-16 was treated with concanavalin A-stimulated CD8(+) lymphocyte lysate. Cleavage occurred after an Asp, suggesting involvement of a caspase (interleukin-1beta-converting enzyme/CED-3) family protease. Using recombinant caspases and granzyme B, we determined that pro-IL-16 cleavage is mediated only by caspase-3. Relevance to pro-IL-16 processing in primary lymphocytes was supported by identifying the p20 subunit of activated caspase-3 in stimulated CD8(+) lymphocytes and by inhibition of CD8(+) lymphocyte lysate-mediated cleavage with Ac-DEVD-CHO. Pro-IL-16 is a substrate for caspase-3, and cleavage by this enzyme releases biologically active IL-16 from its inactive precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号