首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
本文利用非线性有限元软件MSC.M arc模拟了等径角挤压(Equal Channel Angu lar Extru-sion,ECAE)过程中模具的应力分布。结果表明:模具拐角处承受的应力较大;摩擦力对等径角挤压过程中模具应力有显著影响。  相似文献   

2.
等径角挤压(ECAP)是一种利用纯剪切变形获得块状超细晶材料的方法。利用非线性有限元软件对纯铝的ECAP变形过程进行了数值模拟,获得了等效应变和等效应力分布规律,为今后的研究打下基础。  相似文献   

3.
张文玉  刘先兰  杨浩  徐运 《热加工工艺》2012,41(19):77-80,83
通道外角是等径角挤压过程中影响试样变形均匀性的重要因素.运用有限元模拟的方法研究了通道外角在等径角挤压过程中的影响.研究结果表明:随着通道外角的增大,材料的流动阻力降低,材料的剪切更加趋于均匀,致使试样的变形和等效应变分布都更加均匀.  相似文献   

4.
在不同温度下对304不锈钢进行等径角挤压有限元模拟,对挤压变形特点及不同温度下的挤压力及等效应力进行对比分析。结果表明,800℃时的最大挤压力是最低的,该温度下挤压对模具有利。工件温度在800℃时,其等效应力最大为267 MPa,在400℃时其等效应力最小为224 MPa,最大变化幅度为43 MPa,整体上看工件等效应力受温度影响较小。304不锈钢在低温条件下进行等径角挤压变形后加工硬化非常严重,随着挤压温度进一步增加,拉伸曲线形貌基本上一致。  相似文献   

5.
数值模拟内圆角半径对AZ31镁合金等径角挤压过程的影响   总被引:1,自引:0,他引:1  
通过Gleeble-1500D热模拟机获得AZ31镁合金的应力-应变曲线,采用DEFORM-3D软件对其等径角挤压过程进行了模拟,并分析了不同内圆角半径对挤压过程的应力和应变影响。结果表明,随着内圆角半径的增大,试样表面变得光滑,在内圆角处所受平均应力减小,试样的平均等效应变随之增大,中间稳定变形区域减小。  相似文献   

6.
等径角挤压是一种能有效细化材料的微观组织、提高材料综合性能、改善难变形材料成形性的新技术.采用商用有限元软件DEFORM-3D的热力耦合分析技术,对TC4合金的等径角挤压工艺进行了数值模拟.着重探讨了温度、变形速度及润滑条件等工艺参数对挤压过程中坯料温度场的影响.模拟结果表明,在实验条件下,坯料主要变形阶段的变形温度保持在大约600℃,在此温度TCA合金等径角挤压后晶粒细化最佳,为工艺实验的进行提供了科学的依据.  相似文献   

7.
连续等径角挤压及其成形过程的三维数值模拟   总被引:1,自引:0,他引:1  
连续等径角挤压是一种制备大尺寸超细晶材料的新技术,它结合了等径角挤压和连续挤压技术的特点,解决了等径角挤压不能制备大尺寸超细晶材料的问题,该技术对超细晶材料的推广应用具有重要意义。利用DE-FORM3D软件对纯铜连续等径角挤压变形行为进行了数值模拟,分析了变形过程中材料的流动、应变和温度变化情况,并对不同变形速度、摩擦条件和模具结构下的变形过程进行了比较,为连续等径角挤压工艺提供了理论指导。  相似文献   

8.
等径角挤压过程的计算机模拟   总被引:1,自引:0,他引:1  
等径角挤压可以在不改变材料横截面的情况下使其反复产生严重的塑性变形,从而降低材料的晶粒尺寸,是制备块体超细晶材料的新工艺。该文采用DEFORM程序对等径角挤压过程进行了模拟,分析了挤压过程中材料的应力、应变、挤压力等的变化及其分布,为今后的研究打下了基础。  相似文献   

9.
锐角模具通道等径角挤压有限元分析   总被引:1,自引:1,他引:0  
采用有限元模拟研究了1100Al锐角模具通道(φ=60°)等径角挤压时的坯料流动、等效应变、挤压应力以及速度分布.与φ=90°模具等径角挤压坯料相比,锐角模具通道等径角挤压可以在坯料内产生更大的等效应变,有助于提高挤压的效率;但挤压过程中在两通道相交外侧尖角处出现死区,由于死区的影响,坯料横截面上等效应变分布不均匀,挤出坯料下表面区域等效应变明显高于其他区域,同时,由于挤压应力明显上升,对挤压设备以及工模具提出更高的要求.因此,锐角模具通道等径角挤压比较适合于塑性较好、强度较低的材料.  相似文献   

10.
等径侧向挤压变形截荷的有限元分析   总被引:2,自引:0,他引:2  
本文对等径侧向挤压过程中载荷的变形,分别进行了实测及有限元模拟计算,现任中结果吻合较好。同时通过有限元模拟,对影响载荷的各种因素进行了分析。  相似文献   

11.
等通道转角挤压工艺有限元分析   总被引:1,自引:0,他引:1  
用SOLIDWORKS建立等通道转角挤压(ECAP)的几何模型,用有限元软件DEFORM-3D划不同摩擦系数、不同冲头速度时的挤压过程进行了模拟、获得了相应的应变场以及载荷行程曲线,得到了模具的应力分布。模拟结果表明:变形区域集中在两个通道的相交部分;等效应变速率与冲头的运动速度成正比:摩擦系数对应变的分布和变形载荷有较大影响:在一定的摩擦条件下,完成ECAP所需的变形抗力与材料流动应力成线性关系;当通道表面粗糙度Ra为1.6μm时,模具危险点工作应力不会超过变形体流动应力的4.5倍。  相似文献   

12.
应用三维有限元方法对楔形头部试样在等径弯曲通道挤压(ECAP)中的变形行为进行了模拟分析,以比较不同楔形方案(前楔形、后楔形以及楔形头部大小)对金属ECAP变形的影响.结果表明:试样头部为后楔形可以有效的降低加工载荷,显著改善应力/应变分布的均匀性,消除应变集中,避免折叠缺陷,从而获得组织性能较为均匀的试样.  相似文献   

13.
为了优化室温下等通道转角挤压纯钛工件的几何形状,采用三维有限元软件模拟了纯钛工件的变形行为。通过对比分析工件形状和尺寸对损伤因子、挤压力以及剪切带处应变速率分布等参数的影响,获得了工件最佳几何形状。仿真结果表明,方条形工件的损伤因子大于圆棒型工件,且高于纯钛材料的临界损伤因子,表明方条形工件不利于变形,易产生表面裂纹。3D模拟结果表明,直径为15 mm的圆棒型工件具有最小的损伤因子,适中的挤压载荷以及相对均匀的应变分布。依据仿真结果提供的最佳工件,即直径为15 mm的圆棒型工件,室温下成功挤压出直径15 mm的纯钛圆棒。挤压后样品截面上硬度分布均匀,与3D仿真所预示的均匀应变分布相一致。  相似文献   

14.
为了通过大塑性变形技术制备出满足工业需求的大尺寸块体超细晶材料,采用有限元法模拟了不同尺寸挤压件的1、2道次等径角挤压过程,得到了各挤压件的等效应变、等效应力和载荷曲线.分析得出:挤压件尺寸对等效应变的大小和分布以及等效应力的大小影响甚微;但随着挤压件尺寸的增大,等效应力和2道次等效应变的分布均匀性降低,挤压载荷增大.这表明:经过多道次等径角挤压的大尺寸挤压件可以获得晶粒分布均匀的大块体超细晶材料.  相似文献   

15.
使用有限元方法模拟在等径通道挤压过程中,后压力对材料塑性变形的影响,并对多道次挤压试验结果进行分析比较.结果表明:施加后压力可以有效提高材料每道次挤压的塑性变形程度和分布均匀性.在多道次挤压过程中,施加后压力可以大幅度降低晶粒最终细化尺寸,降低挤压温度来减小温度对晶粒细化效果的影响.  相似文献   

16.
运用有限元软件DEFORM-3D研究了ECAP模具拐角对工件间推挤式等通道转角大应变技术的影响.结果表明:载荷的最大值随模具拐角增大而减小;模具拐角是影响工件接触区形变的主要因素;另外,与单个工件等通道转角大应变技术相比,工件间推挤式等通道转角能显著提高工件应变均匀性.  相似文献   

17.
等径角挤压被认为是制备块体超细晶材料最有前景的工艺方法之一.采用刚塑性有限元法分析了不同路线多道次等径角挤压后的等效应变分布.结果表明:一道次等径角挤压后坯料中间主要变形区下部坯料的等效应变较低.A路线多道次挤压后,变形更加不均匀,上下表面的等效应变差值增大;C路线挤压后等效应变分布呈上下表面小,中间较高的分布特征,且随挤压次数的增加,中心和上下表面的等效应变差异增大.B_c路线多次挤压后的等效应变分布较均匀,等效应变较高的区域应变相差较小且所占区域较大.模拟结果对于等径角挤压工艺的制定可起到指导作用.  相似文献   

18.
等通道转角挤压的工艺特点及应用前景   总被引:1,自引:2,他引:1  
等通道转角挤压(简称ECAP)技术是一种新型的制备三维大尺寸块状超细晶材料的工艺方法.对ECAP工艺的技术原理、特点及应用前景进行了概述,以期为材料加工工作者提供一种新的研究思路和技术借鉴.  相似文献   

19.
采用有限元数值模拟方法研究了不同模具结构设计对TB2合金(Ti-5Mo-5V-8Cr-3Al)等通道弯角挤压过程的影响。与传统模具几何设计特点相比,新型等通道弯角挤压模具设计的内转角半径要大于外转角半径且均与模具内壁相切。针对模具不同内转角半径和外转角半径对等通道弯角挤压过程的影响,分析了TB2合金等通道弯角挤压过程的变形行为和应变均匀性。结果表明,随着内转角半径分别从1 mm升高至3,5,7和9 mm,TB2合金等通道弯角挤压后的应变均匀性更好和挤压载荷明显增大,较小的外转角半径能够使TB2合金挤压后获得较好的应变均匀性。综合内转角半径和外转角半径的有限元分析结果,当外转角半径为4 mm,内转角半径为5 mm时,TB2合金经等通道弯角挤压后具有最为理想的应变均匀性分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号