首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of a sustainable and environment friendly crop production system depends on identifying effective strategies for the management of tillage and postharvest crop residues. Three-year (2004–2007) field study was initiated on two soil types to evaluate the effect of straw management (burning, incorporation and surface mulch) and tillage (conventional tillage and zero tillage) before sowing wheat and four nitrogen rates (0, 90, 120 and 150 kg N ha−1) on crop yields, N use efficiency, and soil fertility in the northwestern India. Effect of tillage and straw management on nitrogen transformation in soils was investigated in a laboratory incubation study. In sandy loam, grain yield of wheat with straw mulch-zero-till (ZT) was 7% higher compared to when residues were burnt-ZT but it was similar to straw burnt-conventional till (CT), averaged across 3 years. In silt loam, grain yield of wheat with straw mulch-ZT was 4.4% higher compared to straw incorporated-CT, but it was similar to straw burnt-CT. Response to N application was generally observed up to 150 kg N ha−1 except in 2004–2005 on sandy loam where N response was observed up to 120 kg N ha−1, irrespective of straw and tillage treatments. In sandy loam, RE was lower (49%) for straw burnt-ZT than in other treatments (54–56%). In silt loam, RE was higher in straw mulch-ZT compared with straw incorporation-CT (65 vs. 58%). In sandy loam, AE was higher in straw burnt-CT and straw mulch-ZT compared with the other treatments (19.2 vs. 16.9 kg grain kg−1 N applied). In silt loam, AE was lower in straw incorporation-CT than in other treatments (16.0 vs. 17.6 kg grain kg−1 N applied). Rice yield and N uptake were not influenced by straw and tillage management treatments applied to the preceding wheat. Recycling of rice residue (incorporation and surface mulch) compared with straw burning increased soil organic carbon and the availability of soil P and K. There was more carbon sequestration in rice straw mulch with zero tillage (25%) than in straw incorporation with conventional tillage (17%). Soil N mineralization at 45 days after incubation was 15–25% higher in straw retention plots compared with on straw burnt plots.  相似文献   

2.
The rapidly increasing population and associated quest for food and feed in China has led to increased soil cultivation and nitrogen (N) fertilizer use, and as a consequence to increased wind erosion and unbalanced crop nutrition. In the study presented here, we explored the long-term effects of various combinations of maize stover, cattle manure and nitrogen (N) and phosphorus (P) fertilizer applications on maize (Zea mays L.) yield and nutrient and water use efficiencies under reduced tillage practices. In a companion paper, we present the effects on nutrient balances and soil fertility characteristics. The ongoing factorial field trial was conducted at Shouyang Dryland Farming Experimental Station in northern China from 1993 onwards. The incomplete, determinant-optimal design comprised 12 treatments, including a control treatment, in duplicate. Grain yields and N, P, and potassium (K) uptakes and N, P and K use efficiencies were greatly influenced by the amount of rain during the growing season (GSR), and by soil water at sowing (SWS). There were highly significant interactions between GSR and added stover and manure, expressed in complex annual variations in grain yield and N, P and K use efficiencies. Annual mean grain yields ranged from 3,000 kg ha−1 to 10,000 kg ha−1 and treatment mean yields from 4,500 kg ha−1 to 7,000 kg ha−1. Balanced combination of stover (3,000–6,000 kg), manure (1,500–6,000 kg) and N fertilizer (105 kg) gave the highest yield. Stover and manure were important for supplying K, but the effects differed greatly between years. Overall mean N recovery efficiency (NRE) ranged from 28% to 54%, depending on N source. NRE in wet years ranged from 50% to 90%. In conclusion, balanced combinations of stover, manure and NP fertilizer gave the highest yield and NRE. Reduced tillage with adding stover and manure in autumn prior to ploughing is effective in minimizing labor requirement and wind erosion. The potentials of split applications of N fertilizer, targeted to the need of the growing crop (response farming), should be explored to further increase the N use efficiency.  相似文献   

3.
Potassium (K) imbalances are of growing concern in southern China, where rice (Oryza sativa L.) is the primary food resource for a growing population. This study examined rice yield, K uptake and apparent balance under long-term fertilization in rice-based systems at four experimental sites, including both rice-rice as well as rice–wheat rotations. The experiments consist of four treatments: control (no fertilizer), nitrogen and phosphorus (NP), nitrogen, phosphorus and potassium (NPK), and NPK plus manure (NPKM). Across all sites, rice yields increased by 3–20% due to K fertilization (NPK vs. NP) and 4–20% due to manure application (NPKM vs. NPK). The mean internal K use efficiency (IE) was lower (32–56 kg kg−1) in treatments receiving K (NPK and NPKM) than in those without K application (36–91 kg kg−1—control and NP). Estimated from the logarithmic model, a total K uptake of 38–212 kg ha−1 was needed to produce 3–7 Mg ha−1 of rice grain. The annual apparent K balances were negative (17–245 kg ha−1 year−1), irrespective of mineral K application and site. But the negative K balance reduced by 27–88 kg ha−1 year−1 through application of mineral K in combination with manure. The higher negative apparent K balances under rice–wheat cropping system were related to the lower K application rate and the soils rich in K-bearing minerals, while the lower negative apparent K balances under rice–rice cropping system were related to the higher K application rate and the soils low in K-bearing minerals. We conclude that a re-adjustment of the current K application rate is needed to improve the long-term rice production in southern China.  相似文献   

4.
Promiscuous soyabean varieties have potential to contribute significantly to income generation, food security and soil N budgets on smallholder farms. One of the major factors limiting this potential is farmers’ preference to allocate nutrient resources to food security cereal crops on the most fertile fields, leaving grain legumes to grow on residual fertility on infertile fields. Two experiments were conducted to: (i) compare the current farmer practice with targeting manure and single super phosphate (SSP) to soyabean in a three-year rotation cycle on two fields with different soil fertility: an infertile sandy soil and a more fertile clay soil; and (ii) assess the effects of variability of soil fertility within and across farms on productivity of soyabean and groundnut. In the first experiment, soyabean (<0.2 t ha−1) and maize yields (<0.7 t ha−1) without fertilizer were poor on a degraded sandy soil. Both crops responded poorly to SSP due to deficiency of other nutrients. Manure application significantly increased soyabean and maize yields, led to yield stabilization over three seasons and also significantly increased the proportion of N2 fixed by soyabean (measured using 15N natural abundance) from 60% to 83%. On the sandy soil, P was used more efficiently and gross margins were greater when SSP and manure were applied to maize in a maize–soyabean rotation. Soyabean and maize yields without fertilizer inputs were larger on clay soil with moderate fertility (0.4–0.7 t ha−1 and 2.0–2.3 t ha−1 respectively) and were significantly increased by application of SSP and manure. Within rotations, P recovery was higher when manure and SSP were applied to maize (43 and 25%) than when applied to soyabean (20 and 19%). However, application of manure to soyabean on the clay was more profitable than application to maize for individual crops and within rotations. In the second experiment, soyabean and groundnut yields were largest (∼1 and ∼0.8 t ha−1 respectively) on plots closest to homesteads on wealthy farms, which were more fertile due to good past management. Yields were poor (< 0.5 t ha−1) on other fields which previously had received little nutrient inputs. Soyabean and groundnut yields correlated well with available P (R 2 = 0.5–0.7) and soil organic C (SOC) contents (R 2 = 0.4–0.6). For smallholder farmers to maximise benefits from legume production they need to focus attention on the more fertile plots, although production should be optimized in relation to maize. Targeting nutrients to maize as currently practiced by farmers was more efficient and economic under poor soil fertility conditions, whilst potential exists to increase income by targeting manure to soyabean on the more fertile soils.  相似文献   

5.
A transition period of at least 2 years is required for annual crops before the produce may be certified as organically grown. The purpose of this study was to evaluate the effects of three organic amendments on the yield and quality of wheat (Triticum aestivum L.) and on soil properties during transition to organic production. The organic amendments were composted farmyard manure (FYMC), vermicompost and lantana (Lantana spp. L.) compost applied to soil at four application rates (60 kg N ha−1, 90 kg N ha−1, 120 kg N ha−1 and 150 kg N ha−1). The grain yield of wheat in all the treatments involving organic amendments was markedly lower (36–65% and 23–54% less in the first and second year of transition, respectively) than with the mineral fertilizer treatment. For the organic treatments applied at equivalent N rates, grain yield was higher for FYMC treatment, closely followed by vermicompost. In the first year of transition, protein content of wheat grain was higher (85.9 g kg−1) for mineral fertilizer treatment, whereas, in the second year, there were no significant differences among the mineral fertilizer treatment and the highest application rate (150 kg N ha−1) of three organic amendments. The grain P and K contents were, however, significantly higher for the treatments involving organic amendments than their mineral fertilizer counterpart in both years. Application of organic amendments, irrespective of source and rate, greatly lowered bulk density (1.14–1.25 Mg m−3) and enhanced pH (6.0–6.5) and oxidizable organic carbon (13–18.8 g kg−1) of soil compared with mineral fertilizer treatment after a 2-year transition period. Mineral fertilized plots, however, had higher levels of available N and P than plots with organic amendments. All the treatments involving organic amendments, particularly at higher application rates, enhanced soil microbial activities of dehydrogenase, β-glucosidase, urease and phosphatase compared with the mineral fertilizer and unamended check treatments. We conclude that the application rate of 120 kg N ha−1 and 150 kg N ha−1 of all the three sources of organic amendments improved soil properties. There was, however, a 23–65% reduction in wheat yield during the 2 years of transition to organic production.  相似文献   

6.
Field experiments were designed to investigate the effectiveness of integrated soil fertility management (ISFM), comparing fertilizer use efficiency and its impact on millet, cultivated close to the homestead (“infields”) and away from the homestead (“outfields”). Millet yields and response to N (0, 30, and 60 kg ha−1) and P (0, 15, and 30 kg ha−1) were determined on nine infields and nine outfields over a period of 3 years (from 1999 to 2001) in the southern Sahel of Niger. Rainfall was 650, 470, and 370 mm during the three successive years, interaction between decreasing rainfall and millet yield performance was also analyzed. While soil organic carbon (1.5 g kg−1 on outfields and 1.6 g kg−1 on infields) and pH-H2O (4.8 on outfields and 5.1 on infields) were comparable, total-N, plant available P (measured as P-Olsen and P-Bray), and exchangeable Ca, K, and Mg levels were higher on infields as compared to outfields. Without fertilizer, average grain yield (GY) and stover yield obtained on infields were three times as high as on outfields. GY across years and fertilizer treatments was higher on infields as compared to outfields (P < 0.001). Average yield was 800 kg ha−1 on outfields and 1,360 kg ha−1 on infields (P < 0.001). On outfields, average GY was stagnant over the 3-year experimental period. Despite declining rainfall, millet GY across all treatments gradually increased over time on infields (P < 0.001). P fertilization alone resulted on both field types to steadily and substantial yield increases while yield response to N fertilization was only obvious when fertilizer P was applied. With no fertilizer applied, N uptake on infields (19 kg N ha−1) was more than twice as high as on outfields (7 kg ha−1), and P uptake was four times higher on infields (3 kg ha−1) than on outfields (0.8 kg ha−1). Indigenous soil N supply was on average 24 kg N ha−1 on outfields and 46 kg N ha−1 on infields. Average value for indigenous soil P supply was 4 kg P ha−1 on infields and 2 kg ha−1 on outfields. Apparent recovery of fertilizer N applied varied considerably among treatments and ranged from 17 to 23% on outfields and 34 to 37% on infields (P < 0.001). Average apparent recovery of fertilizer P applied was significantly higher (P < 0.001) on infields (31%) than on outfields (18%) over the 3-year growing period, illustrating ISFM-induced positive effect on millet nutrient N and P use. Results indicate higher inherent soil fertility, underline ISFM-induced drought tolerance of soils on infields as compared to outfields, and highlight the crucial role of fertilizer P (especially on outfields) for millet production. These call for site-specific nutrient management and support, even under low rainfall conditions, the potential value of fertile infields for efficient and productive external input use and sustainable millet production in West African Sahel.  相似文献   

7.
Participatory on-farm trials were conducted for three seasons to assess the benefits of small rates of manure and nitrogen fertilizer on maize grain yield in semi-arid Tsholotsho, Zimbabwe. Two farmer resource groups conducted trials based on available amounts of manure, 3 t ha−1 (low resource group) and 6 t ha−1 (high resource group). Maize yields varied between 0.15 t ha−1 and 4.28 t ha−1 and both absolute yields and response to manure were strongly related to rainfall received across seasons (P < 0.001). The first two seasons were dry while the third season received above average rainfall. Maize yields within the seasons were strongly related to N applied (R 2 = 0.77 in season 1, and R 2 = 0.88 and 0.83 in season 3) and other beneficial effects of manure, possibly availability of cations and P. In the 2001–2002 season (total rainfall 478 mm), application of 3 and 6 t ha−1 of manure in combination with N fertilizer increased grain yield by about 0.14 and 0.18 t ha−1, respectively. The trend was similar for the high resource group in 2002–2003 although the season was very dry (334 mm). In 2003–2004, with good rainfall (672 mm), grain yields were high even for the control plots (average 1.2 and 2.7 t ha−1). Maize yields due to manure applications at 3 and 6 t ha−1 were 1.96 and 3.44 t ha−1, respectively. Application of 8.5 kg N ha−1 increased yields to 2.5 t ha−1 with 3 t ha−1 of manure, and to 4.28 t ha−1 with 6 t ha−1 of manure. In this area farmers do not traditionally use either manure or fertilizer on their crops, but they actively participated in this research during three consecutive seasons and were positive about using the outcomes of the research in future. The results showed that there is potential to improve livelihoods of smallholder farmers through the use of small rates of manure and N under semi-arid conditions.  相似文献   

8.
Like elsewhere in the Sahel, actual rice yields (3–5 t ha−1) are far below yield potential (±8 t ha−1) in an irrigation scheme in central southern Mauritania. Earlier studies showed that yields are especially low on alkaline soils due to N and P deficiency. We investigated the potential of rice straw application as a mean to improve yields and fertilizer efficiency on an alkaline soil (pH 8.2) and a pH-neutral soil (pH 6.2). Application of 5 t straw ha−1 increased yields by 1.1 t ha−1 on average, independent of soil type and fertilizer dose. Contrary to our study, similar studies in Asia showed little short-term effects of straw on yield and N uptake. Straw application improved N availability, but not P availability. The improved N availability was attributed to N mineralized from the straw, from increased mineralization of soil organic matter (SOM) with a low C:N ratio (< 7.2) and from increased mineral fertilizer N (urea) recovery efficiency. We deduced that improved N fertilizer recovery upon straw application was due to reduced nitrification–denitrification losses. On the alkaline soil, volatilization was important, but that process seemed unaffected by straw application. We hypothesize that the positive effects of straw application at our study site are due to low soil C content (< 43 g kg−1) and low C:N ratio compared to most lowland rice soils in Asia.  相似文献   

9.
Crop production in sub-Saharan Africa is constrained by numerous factors including frequent droughts and periods of moisture stress, low soil fertility, and restricted access to mineral fertilisers. A 2 year (2005/6 and 2006/7) field study was conducted in Shurugwi district, central Zimbabwe, to determine the effects of different nutrient resources and two tillage practices on the grain yield of maize (Zea mays L.) and soybean (Glycine max (L.) Merr). Six nutrient resource treatments (control, pit-stored manure, leaf litter, anthill soil, mineral fertiliser, mineral fertiliser plus pit-stored manure) were combined with two tillage practices (conventional tillage and post-emergence tied ridging). Basal fertilisation was done with 0 kg ha−1 as control, 240 kg ha−1 PKS fertiliser, 18 t ha−1 manure, 10 t ha−1 manure plus 240 kg ha−1 PKS fertiliser, 35 t ha−1 leaf litter, 52 t ha−1 anthill soil. About 60 kg N/ha was applied to fertiliser only and fertiliser plus manure treatments as top dressing in the form of ammonium nitrate (34.5%N). A split-plot design was used with nutrient resource as the main plot and tillage practice as the subplot, and five farmers’ fields were used as replicates. Grain yield was determined at physiological maturity (140 and 126 days after planting for maize and soybean, respectively) and adjusted to 12.5% moisture content for maize and 11% for soybean. In the first season (2005/06), addition of different nutrient resources under conventional tillage increased (P < 0.05) maize grain yield by 102–450%, with leaf litter and manure plus fertiliser treatments, giving the lowest (551 kg ha−1) and highest (3,032 kg ha−1) increments, respectively, compared to the control. For each treatment, tied-ridging further increased maize grain yield. For example, for leaf litter, tied-ridging further increased grain yield by 96% indicating the importance of integrating nutrient and water management practices in semi-arid areas where moisture stress is frequent. Despite the low rainfall and extended dry spells in the second season, addition of the different nutrient resources still increased yield which was further increased by tied-ridging in most treatments. Besides providing grain, soybean had higher residual effects on the following maize crop compared to Crotalaria gramiana, a green manure. It was concluded that the highest benefits of tied-ridging, in terms of grain yield, were realised when cattle manure was combined with mineral fertiliser, both of which are available to resource-endowed households. Besides marginally increasing yield, leaf litter and anthill which represent resources that can be accessed by very poor households, have a positive effect of the soil chemical environment.  相似文献   

10.
Smallholder land productivity in drylands can be increased by optimizing locally available resources, through nutrient enhancement and water conservation. In this study, we investigated the effect of tillage system, organic resource and chemical nitrogen fertilizer application on maize productivity in a sandy soil in eastern Kenya over four seasons. The objectives were to (1) determine effects of different tillage-organic resource combinations on soil structure and crop yield, (2) determine optimum organic–inorganic nutrient combinations for arid and semi-arid environments in Kenya and, (3) assess partial nutrient budgets of different soil, water and nutrient management practices using nutrient inflows and outflows. This experiment, initiated in the short rainy season of 2005, was a split plot design with 7 treatments involving combinations of tillage (tied-ridges, conventional tillage and no-till) and organic resource (1 t ha−1 manure + 1 t ha−1 crop residue and; 2 t ha−1 of manure (no crop residue) in the main plots. Chemical nitrogen fertilizer at 0 and 60 kg N ha−1 was used in sub-plots. Although average yield in no-till was by 30–65% lower than in conventional and tied-ridges during the initial two seasons, it achieved 7–40% higher yields than these tillage systems by season four. Combined application of 1 t ha−1 of crop residue and 1 t ha−1 of manure increased maize yield over sole application of manure at 2 t ha−1 by between 17 and 51% depending on the tillage system, for treatments without inorganic N fertilizer. Cumulative nutrients in harvested maize in the four seasons ranged from 77 to 196 kg N ha−1, 12 to 27 kg P ha−1 and 102 to 191 kg K ha−1, representing 23 and 62% of applied N in treatments with and without mineral fertilizer N respectively, 10% of applied P and 35% of applied K. Chemical nitrogen fertilizer application increased maize yields by 17–94%; the increases were significant in the first 3 seasons (P < 0.05). Tillage had significant effect on soil macro- (>2 mm) and micro-aggregates fractions (<250 μm >53 μm: P < 0.05), with aggregation indices following the order no-till > tied-ridges > conventional tillage. Also, combining crop residue and manure increased large macro-aggregates by 1.4–4.0 g 100 g−1 soil above manure only treatments. We conclude that even with modest organic resource application, and depending on the number of seasons of use, conservation tillage systems such as tied-ridges and no-till can be effective in improving crop yield, nutrient uptake and soil structure and that farmers are better off applying 1 t ha−1 each of crop residue and manure rather than sole manure.  相似文献   

11.
A field experiment was conducted on a loamy sand soil for six years to quantify the effect of soil organic matter on indigenous soil N supply and productivity of irrigated wheat in semiarid sub-tropical India. The experiment was conducted by applying different combinations of fertilizer N (0–180 kg N ha−1), P (0–39 kg P ha−1) and K (0–60 kg K ha−1) to wheat each year. For the data pooled over years, fertilizer N together with soil organic carbon (SOC) and their interaction accounted for 75% variation in wheat yield. The amount of fertilizer N required to attain a yield goal decreased as the SOC concentration increased indicating enhanced indigenous soil N supply with an increase in SOC concentration. Besides SOC concentration, the soil N supply also depended on yield goal. For a yield goal of 4 tons ha−1, each ton of SOC in the 15 cm plough layer contributed 4.75 kg N ha−1 towards indigenous soil N supply. An increase in the soil N supply with increase in SOC resulted in enhanced wheat productivity. The contribution of 1 ton SOC ha−1 to wheat productivity ranged from 15 to 33 kg ha−1 across SOC concentration ranging from 3 to 9 g kg-1 soil. The wheat productivity per ton of organic carbon declined curvilinearly as the native SOC concentration increased. The change in wheat productivity with SOC concentration shows that the effect of additional C sequestration on wheat productivity will depend on the existing SOC concentration, being higher in low SOC soils. Therefore, it will be more beneficial to sequester C in soils with low SOC than with relatively greater SOC concentration. In situations where the availability of organic resources for recycling is limited, their application may be preferred in soils with low SOC concentration. The results show that an increase in C sequestration will result in enhanced wheat productivity but the increase will depend on the amount of fertilizer applied and the existing fertility level of the soil.  相似文献   

12.
Major challenges for combined use of organic and mineral nutrient sources in smallholder agriculture include variable type and quality of the resources, their limited availability, timing of their relative application and the proportions at which the two should be combined. Short-term nutrient supply capacity of five different quality organic resources ranging from high to low quality, namely Crotalaria juncea, Calliandra calothyrsus, cattle manure, maize stover and Pinus patula sawdust were tested in the field using maize as a test crop. The study was conducted on two contrasting soil types at Makoholi and Domboshawa, which fall under different agro-ecological regions of Zimbabwe. Makoholi is a semi-arid area (<650 mm yr−1) with predominantly coarse sandy soils containing approximately 90 g kg−1 clay while Domboshawa (>750 mm yr−1) soils are sandy-clay loams with 220 g kg−1 clay. Each organic resource treatment was applied at low (2.5 t C ha−1) and high (7.5 t C ha−1) biomass rates at each site. Each plot was sub-divided into two with one half receiving 120 kg N ha−1 against zero in the other. At Makoholi, there was a nine-fold increase in maize grain yield under high application rates of C. juncea over the unfertilized control, which yielded only 0.4 t ha−1. Combinations of mineral N fertilizer with the leguminous resources and manure resulted in between 24% and 104% increase in grain yield against sole fertilizer, implying an increased nutrient recovery by maize under organic–mineral combinations. Maize biomass measured at 2 weeks after crop emergence already showed treatment differences, with biomass yields increasing linearly with soil mineral N availability (R 2 = 0.75). This 2-week maize biomass in turn gave a positive linear relationship (R 2 = 0.82) with grain yield suggesting that early season soil mineral N availability largely determined final yield. For low quality resources of maize stover and sawdust, application of mineral N fertilizer resulted in at least a seven-fold grain yield increase compared with sole application of the organic resources. Such nutrient combinations resulted in grain harvest indices of between 44% and 48%, up from a mean of 35% for sole application, suggesting the potential of increasing maize productivity from combinations of low quality resources with mineral fertilizer under depleted sandy soils. At Domboshawa, grain yields averaged 7 t ha−1 and did not show any significant treatment differences. This was attributed to relatively high levels of fertility under the sandy-clay loams during this first year of the trial implementation. Differences in N supply by different resources were only revealed in grain and stover uptake. Grain N concentration from the high quality leguminous resources averaged 2% against 1.5% from sawdust treatments. We conclude that early season soil mineral N availability is the primary regulatory factor for maize productivity obtainable under poor sandy soils. Maize biomass at 2 weeks is a potential tool for early season assessment of potential yields under constrained environments. However, the likely impact on system productivity following repeated application of high N-containing organic materials on different soil types remains poorly understood.  相似文献   

13.
Efficient use of N applied in the form of organic and inorganic fertilizers is important in maize (Zea mays L.) production to maximize producer’s economic returns and maintain soil and water quality. A field study was conducted for three consecutive years (2003–2005) in Thessaloniki, Greece to investigate whether liquid cattle manure can be used to replace inorganic fertilizers and also whether inorganic fertilizer can be applied preplant or as a combination of preplant and sidedress and can affect maize growth, development and N use efficiency. The treatments were control (unfertilized), liquid dairy cattle manure (Manure), application of 260 kg N ha−1 year−1 as basal dressing (N-single), application of 130 kg ha−1 year−1 N as basal dressing before sowing and 130 kg N ha−1 when plants were at the eight-leaf stage (V8) (N-split). In 2 out of the 3 years of the study there was a significant positive effect of fertilizer application on maize growth, development, N uptake, and partitioning compared with the control. Dry matter production was increased by an average of 39% during the 2 years in plots fertilized either with manure or inorganic fertilizers than the control plots. Also from the yield components kernel weight per ear and number of kernels per ear were increased by an average of 35% and 32%, respectively in the fertilized plots compared with the control plots. Chlorophyll level was affected as it was increased by an average of 18%, 14%, and 18% at the ten-leaf stage (V10), silking and milk stage, respectively in the fertilization treatments compared with the control. Similar trend was observed in the other parameters that were studied. No differences were found between the manure and the different times of N application which indicates that manure can be used to replace inorganic fertilizer. Applying N either preplant in a single application or in split application (half of N preplant and half as sidedress) did not have any effect on any characteristics that were studied indicating that preplant application can be used as it is more cost effective. The present study indicates that liquid cattle manure can be used to replace inorganic fertilizers and also that there was no difference between preplant and sidedress application of N.  相似文献   

14.
Nitrogen use efficiency (NUE) of tef, a major staple crop in Ethiopia, is very low, either caused by untimely use of nitrogen (N) fertilizers or lack of other essential nutrients like sulphur (S). The average grain yield of this crop is low, averaging <0.8 Mg ha−1 in farmer’s fields of the semi-arid conditions. Therefore, the present study was conducted to see the effect of the timing of combined N and S fertilization on the yield, yield components, and N and S concentration in the plant parts of the crop. A factorial combination of three rates of N (0, 70, and 105 kg ha−1) with four rates of S (0, 16, 32, and 48 kg ha−1) was applied in randomized complete blocks in three replications. The experiment was carried out in the 2004 and 2005 cropping seasons in the Cambisols of the semi-arid area of Ethiopia. The crop responded significantly (P < 0.05) to both split (one-third at planting and two-thirds at late tillering) and whole (all at planting) N and S applications and years. Combined N and S fertilization increased the dry matter (DM) and grain yields on average by 1.7 and 0.3 Mg ha−1, compared with the control. Similarly, S fertilization increased the NUE of the tef crop by 36%. Nitrogen concentration of shoots was found to significantly increase with S application (P < 0.05), with strong positive interactions both in the split and whole applications. The sulphur increase in grains was significant with N rates for both applications, with significant interaction effects observed for the split application in both cropping seasons. Split application resulted in 0.9 and 0.3 Mg ha−1 significant increase in DM and grain yields, averaged for both years and treatments compared with the whole application. Similar significant increases were observed for panicle yield, NUE, and shoot and grain N and S concentrations. The average N:S ratio in grains was 10.6:1. Significant (P < 0.05) yearly variations were also observed. Dry matter and grain yields of 2005 were higher on average by 2.10 and 0.32 Mg ha−1 than those of the 2004 cropping season. The percentage of N and S concentrations of grains, averaged for both applications, were higher by 13 and 9% in 2004; even though the N and S uptakes of 2005 were higher on average by 5.0 and 0.5 kg ha−1 than those of the 2004 cropping season. This work showed that the yield response and NUE of the tef crop could be improved with split N and S fertilizer applications, with tef-producing farmers benefitting from the application of S-containing N fertilizers to soils deficient in these nutrients.  相似文献   

15.
Phosphorus (P) deficiency is a major constraint for crop production in many parts of the world including Myanmar and field research into management of P fertilizers and P responsiveness of crops on infertile soils has been limited. The purpose of this study is to determine maize yield response to different forms of P fertilizers on an acidic (pH 4.9) P deficient (Olsen-P 8 mg kg−1) Yellow Earth (Acrisol) in Southern Shan State, Myanmar and to establish relationships between soil Olsen-P test values (0.5 M sodium bicarbonate extracted P) and maize yield. Field experiments were conducted during two cropping seasons. There were 15 treatments in total: P was applied at seven rates of a soluble P fertilizer as Triple superphosphate (TSP) (0–120 kg P ha−1) to establish a P response curve; one rate of a partially soluble P fertilizer (Chinese partially acidulated phosphate rock, CPAPR) and two organic P fertilizers (farmyard manure (FYM) and Tithonia diversifolia) at 20 kg P ha−1; combination of TSP and CPAPR at 20 kg P ha−1 with FYM and Tithonia at 20 kg P ha−1; an additional treatment (TSP 20 kg P ha−1 plus 2.5 t ha−1 dolomite) for assessing the liming effect of a local dolomite. In Year 1, applications of TSP at 40–60 kg P ha−1 produced near maximum grain yields, whereas in Year 2 this could be achieved with a reapplication of 20–30 kg P ha−1 on top of the residual value of the Year 1 application. In both years, CPAPR, TSP and Tithonia at 20 kg P ha−1 significantly increased maize grain yield, but FYM failed to increase grain yield. In Year 1, CPAPR and TSP effects on grain yield were higher than that of Tithonia but in Year 2 the effects were same for all these three treatments. In both years the combination of FYM (20 kg P ha−1) with TSP (20 kg P ha−1) produced significantly higher grain yield than TSP at 20 kg P ha−1 whereas 40 kg P ha−1 of TSP application did not significantly increase grain yield over the TSP application at 20 kg P ha−1. Similar results were obtained when half the P applied as CPAPR was substituted with P from Tithonia and FMP during the first year. The combined data from the two years experiment suggests that 90% of maximum maize grain yields can be obtained by raising the Olsen-P to 30–35 mg P ha−1 soil at the silking stage of growth. Olsen-P for the treatments at silking in Year 1 was: Control < FYM, Tithonia < TSP, CPAPR and in Year 2 was: Control < FYM < Tithonia < TSP, CPAPR. The results showed that for a long-term approach, repeated annual applications of Tithonia can be considered as a potential P source for improving soil P status in P deficient Yellow Earths.  相似文献   

16.
Potential N (SN) and P (SP) supplies, N and P utilization efficiencies and fertilizer recovery rates for the northern Guinea Savanna (NGS) agro-ecological zone of Nigeria were derived from data collected on farmers’ fields, and used as input in the QUantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) model. The potential N supply ranged from 7 to 56 kg N ha−1, with a mean of 25 kg N ha−1, while SP ranged from 2 to 12 kg P ha−1 with a mean of 5 kg P ha−1. Both SN (CV = 42%) and SP (CV = 57%) were highly variable between farmers’ fields. Deriving potential nutrient supply from ‘a’ values gives lower estimates. The empirical equation in QUEFTS that estimates SN ( ) sufficiently predicted the SN of soils in the NGS (RMSE = 8.0 kg N ha−1 index of agreement (IOA) = 0.81). The SP equation () predicted moderately potential P supply (RMSE = 6.80 kg P ha−1, IOA = 0.54). When N or P is maximally accumulated in the plant (i.e., least efficiently utilized), the utilization efficiency was 21 kg grain kg−1 N taken up and 97 kg grain kg−1 P taken up. When these nutrients were maximally diluted in the plant (i.e., most efficiently utilized), the utilization efficiency was 70 kg grain kg−1 N taken up and 600 kg grain kg−1 P taken up. The range in N recovery fraction (NRF) of N fertilizer applied was from 0.30 to 0.57, with a mean of 0.39, while the P recovery fraction (PRF) ranged from 0.10 to 0.66 with a mean of 0.24. Although SP was moderately predicted, when QUEFTS model input parameters were adjusted for the NGS, the model sufficiently (IOA = 0.83, RMSE = 607 kg DM ha−1) estimated maize grain yield in the NGS of Nigeria. The original QUEFTS model however, gave better predictions of maize grain yield as reflected by the lower RMSE (IOA = 0.84, RMSE = 549 kg DM ha−1). Consequently, QUEFTS is a simple and efficient tool for making yield predictions in the NGS of northern Nigeria.  相似文献   

17.
Understanding mulching influences on nitrogen (N) activities in soil is important for developing N management strategies in dryland. A 3 year field experiment was conducted in the Loess Plateau of China to investigate the effects of mulching, N fertilizer application rate and plant density on winter wheat yield, N uptake by wheat and residual soil nitrate in a winter wheat-fallow system. The split plot design included four mulching methods (CK, no mulch; SM, straw mulch; FM, plastic film mulch; CM, combined mulch with plastic film and straw) as main plot treatments. Three N fertilizer rates (N0, 0 kg N ha−1; N120, 120 kg N ha−1; N240, 240 kg N ha−1) were sub-plot treatments and two wheat sowing densities (LD, low density, seeding rate = 180 kg ha−1; HD, high density, seeding rate = 225 kg ha−1) were sub-subplot treatments. The results showed that wheat yield, N uptake, and N use efficiency (NUE) were higher for FM and CM compared to CK. However, soil nitrate-N contents in the 0–200 cm soil profile were also higher for FM and CM compared to CK after the 3 year experiment. Wheat grain yields were higher for SM compared to CK only when high levels of nitrogen or high planting density were applied. Mulching did not have a significant effect on wheat yield, nitrogen uptake and NUE when soil water content at planting was much high. Wheat yield, N uptake, and residual nitrate in 0–200 cm were significantly higher for N240 compared to N120 and N0. Wheat yield and N uptake were also significantly higher for HD compared to LD. When 0 or 120 kg N ha−1 was applied, HD had more residual nitrate than LD while the reverse was true when 240 kg N ha−1 was applied. After 3 years, residual nitrate-N in 0–200 cm soil averaged 170 kg ha−1, which was equivalent to ~40% of the total N uptake by wheat in the three growing seasons.  相似文献   

18.
Soil, crop and fertilizer management practices may affect the amount and quality of organic C and N in soil. A long-term field experiment (growing barley, wheat, or canola) was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 (1980 to 1998) or 27 years (1980 to 2006) of tillage (zero tillage [ZT] and conventional tillage [CT]), straw management (straw removed [SRem]and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha−1 in SRet and 0 kg N ha−1 in SRem plots) on total organic C (TOC) and N (TON), and light fraction organic C (LFOC) and N (LFON) in the 0–7.5 and 7.5–15 cm or 0–5, 5–10 and 10–15 cm soil layers. The mass of TOC and TON in soil was usually higher in SRet than in SRem treatment (by 3.44 Mg C ha−1 for TOC and 0.248 Mg N ha−1 for TON after 27 years), but there was little effect of tillage and N fertilization on these parameters. The mass of LFOC and LFON in soil tended to increase with SRet (by 285 kg C ha−1 for LFOC and 12.6 kg N ha−1 for LFON with annual rate of 100 kg N ha−1 for 27 years), increased with N fertilizer application (by 517 kg C ha−1 for LFOC and 36.0 kg N ha−1 for LFON after 27 years), but was usually higher under CT than ZT (by 451 kg C ha−1 for LFOC and 25.3 kg N ha−1 for LFON after 27 years). Correlations between soil organic C or N fractions were highly significant in most cases. Linear regressions between crop residue C input and soil organic C or N were significant in most cases. The effects of tillage, straw management and N fertilizer on soil were more pronounced for LFOC and LFON than TOC and TON, and also in the surface layers than in the deeper layers. Tillage and straw management had little or no effect on C:N ratios, but the C:N ratios in light organic fractions significantly decreased with increasing N rate (from 20.06 at zero-N to 18.91 at 100 kg N ha−1). Compared to the 1979 results, in treatments that did not receive N fertilizer (CTSRem0, CTSRet0, ZTSRem0 and ZTSRet0), CTSRem0 resulted in a net decrease in TOC concentration (by 1.9 g C kg−1) in the 0–15 cm soil layer in 2007 (after 27 years), with little or no change in the CTSRet0 and ZTSRem0 treatments, while there was a net increase in TOC concentration (by 1.2 g C kg−1) in the ZTSRet0 treatment. Straw retention and N fertilizer application at 50 and 100 kg N ha−1 rates showed a net positive effect on TOC concentration under both ZT (ZTSRet50 by 2.3 g C kg−1 and ZTSRet100 by 3.1 g C kg−1) and CT (CTSRet50 by 3.5 g C kg−1 and CTSRet100 by 1.6 g C kg−1) treatments in 2007 compared to 1979 data. In conclusion, the findings suggest that retention of straw, application of N fertilizer and elimination of tillage would improve soil quality, and this might increase the potential for N supplying power of the soil and sustainability of crop productivity.  相似文献   

19.
The sustainability of cereal/legume intercropping was assessed by monitoring trends in grain yield, soil organic C (SOC) and soil extractable P (Olsen method) measured over 13 years at a long-term field trial on a P-deficient soil in semi-arid Kenya. Goat manure was applied annually for 13 years at 0, 5 and 10 t ha−1 and trends in grain yield were not identifiable because of season-to-season variations. SOC and Olsen P increased for the first seven years of manure application and then remained constant. The residual effect of manure applied for four years only lasted another seven to eight years when assessed by yield, SOC and Olsen P. Mineral fertilizers provided the same annual rates of N and P as in 5 t ha−1 manure and initially ,gave the same yield as manure, declining after nine years to about 80%. Therefore, manure applications could be made intermittently and nutrient requirements topped-up with fertilizers. Grain yields for sorghum with continuous manure were described well by correlations with rainfall and manure input only, if data were excluded for seasons with over 500 mm rainfall. A comprehensive simulation model should correctly describe crop losses caused by excess water.  相似文献   

20.
Field experiments were conducted during the wet seasons of 2005–2006 and 2006–2007 on an Aeric Endoaquept (pH 7.2) to study the relative performance of chelated zinc [Zn ethylene diamine tetra-acetic acid (EDTA)] and zinc sulphate (ZnSO4) on the growth and yield of rice (cv. IET 4094). The diethylene triamine penta-acetic acid (DTPA) extractable (available) Zn concentration in soil and total Zn content in dry matter of rice increased initially up to 28 days of crop growth when Zn was applied as a single basal source, being greater with chelated Zn compared with ZnSO4 application. The highest mean Zn uptake by rice grain and straw was found to be 209.2 and 133.8 g ha−1, respectively, in the treatment T7 (1 kg Zn ha−1 as Zn-EDTA at basal). The mean filled grain percentage, thousand grain weight and number of panicles m−2 were highest with 90.4%, 25.4 g and 452, respectively, in treatment T7 where 1 kg ha−1 Zn as Zn-EDTA was applied. The highest yield of grain and straw was 5.5 and 7.3 t ha−1, respectively, in treatment T7, resulting in a 37.5 and 43.1% increase in yield over that of the control during both the years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号