首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
采用化学气相沉积法合成晶须状碳纳米管(WMWCNTs)和碳纳米管(MWCNTs)。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、拉曼光谱仪(Raman)对其进行详细分析。以纸纤维为基体材料,晶须状碳纳米管和碳纳米管为功能材料,通过真空抽滤制得碳(WMWCNTs)/碳(MWCNTs)/纤维素复合纸。采用两电极测试体系,通过循环伏安及恒流充放电方法对其超级电容器性能进行测试。在扫描速率为1mV/s时,碳/碳/纤维素复合纸电极的比容量达到120F/g。在电流密度为0.4A/g时,碳/碳/纤维素复合纸电极比容量值可达51.5F/g。在电流密度为0.4~1.4A/g范围时,最大比能量和比功率分别为63.7Wh/kg和3.99kW/kg,表现出良好的超级电容器性能。  相似文献   

2.
对一种以炭化的碳纳米管复合纸为电极的超级电容器进行了研究。纸纤维为基体,碳纳米管为功能材料,将分散好的碳纳米管与纸纤维混合均匀抽滤,制成碳纳米管复合纸,碳纳米管复合纸在真空炉中经1460℃炭化。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和拉曼光谱仪对其进行分析。以1mol/L的LiPF6为电解液,对以炭化碳纳米管复合纸作电极的超级电容器进行循环伏安、恒流充放电和交流阻抗谱测试。扫描速率为1mV/s时,炭化碳纳米管复合纸电极的比容量达到105F/g;放电电流为12mA时,比能量和比功率分别为22 Wh/kg、1.5kW/kg,表现出良好的超级电容器性能。  相似文献   

3.
采用原位聚合法,在活性碳(AC)颗粒上生长聚3,4乙烯二氧噻吩(PEDOT)来制备活性碳/聚3,4乙烯二氧噻吩(AC/PEDOT)超级电容器复合电极材料,并研究不同配比复合材料的电化学性能。采用X射线衍射、扫描电子显微镜及傅里叶红外等技术对样品进行表征,采用循环伏安、恒流充放电及交流阻抗等方法对样品进行了电化学性能测试。结果表明,AC与PEDOT的复合可大幅度提高比容量,当n(AC)∶n(PEDOT)=10∶1,电流密度为1A/g时,比容量可达250F/g,比AC的比容量提高了95.3%,经1 000次充放电后,电容保持率为80.4%,具有循环稳定性能好,低内阻0.29Ω等优点,有望实现碳基超级电容器的小型化。  相似文献   

4.
采用水热法在阳极氧化的TiO_2纳米管阵列上修饰MnO_2,制备MnO_2/TiO_2复合物电极,并组装为对称超级电容器。利用FESEM、TEM、XPS和电化学工作站对样品的表面形貌、元素价态和电化学性能进行表征。结果表明:MnO_2以纳米颗粒形态均匀分布在TiO_2纳米管阵列管口和内部,充放电电流密度在1A/g下时,比电容为429.3F/g,经5 000次循环后的电容保持率为82.4%。MnO_2/TiO_2对称超级电容器在电流密度5A/g下充放电比电容为39.9F/g,经5 000次循环后的电容保持率为91.5%;功率密度400 W/kg下,能量密度为18.98 Wh/kg。阳极氧化的TiO_2纳米管阵列既可做MnO_2的载体,基底Ti又可做集流体,减轻了超级电容器的质量,为制备超级电容器提供了一种思路。  相似文献   

5.
采用简单的化学氧化聚合法,制备了分散性良好且尺寸均一的聚苯胺(PANI)纳米线电极材料,其直径和长度分别为~60nm和~1μm。三电极体系电化学测试结果表明PANI纳米线电极在电流密度为0.5A/g时的质量比电容为505F/g,电流密度从0.5A/g增至20A/g的电容保持率高达78%。PANI纳米线电极材料有望成为组装高倍率性能超级电容器的可选电极材料。  相似文献   

6.
以2-巯基吡啶(PySH)为氧化还原活性介质,以聚乙烯醇(PVA)为聚合物基体,采用溶液共混法制备了PVA-H2SO4-PySH凝胶电解质,研究了Py-SH添加量对凝胶电解质离子电导率的影响,并组装了活性炭电极超级电容器,利用循环伏安、恒流充放电、交流阻抗谱和自放电等测试对超级电容器电化学性能进行了表征。结果表明,PySH的引入提高了凝胶电解质的离子电导率,同时也改善了超级电容器的电化学性能,在相同电流密度下,超级电容器电极比电容由137F/g提高为394F/g,能量密度由3.6Wh/kg提高到12.4Wh/kg,经过3000次充放电循环后比电容保持率为89%。  相似文献   

7.
通过自聚合反应及高温热处理手段,再采用化学氧化聚合法在复合物的表面自组装生长聚苯胺(PANI)纳米须,成功构筑了MnO/介孔碳(MC)/PANI三元纳米复合材料。材料的结构及其电化学性能测试结果表明:该复合材料的比电容在1.0A/g的电流密度下达到498.6F/g,显著高于MnO/MC二元复合材料的比电容(212F/g);当电流密度增加至10A/g时,比电容仍能保持352F/g。经过1000次的充放电循环,复合电极的比容量保持率为71.6%。  相似文献   

8.
采用简单的共沉淀法,制备了分散性良好且尺寸均一的钴铝层状双金属氢氧化物(CoAl-LDH)六边形纳米片电极材料,其尺寸约为2μm。三电极体系电化学测试结果表明,在电流密度为1A/g时,CoAl-LDH纳米片电极材料的质量比电容为723F/g,电流密度增加至20A/g时,电容保持率高达72%。CoAl-LDH纳米片电极材料有望成为组装高性能超级电容器的可选电极材料。  相似文献   

9.
用简单的一步水热法制备了S掺杂的NiTe(NiTe∶S)纳米片。利用X射线衍射(XRD)、能谱仪(EDS)以及场发射扫描电镜(FESEM)等分析技术对材料物相和形貌进行表征。并将制得的NiTe∶S作为超级电容器的电极材料,电化学性能测试结果表明,S∶Te掺杂的比例对材料的电化学性能有较大的影响,当x(S)∶x(Te)=3∶50时,电极材料在5 A/g的电流密度下的比电容达到887.3 F/g,与未掺杂时相比提高了214%。此外,利用所制备NiTe∶S电极(正极)与活性炭电极(AC)(负极)组装成非对称超级电容器。该非对称超级电容器展现出了优异的电化学性能,其能量密度和功率密度能达32.8 Wh/kg和800.5 W/kg。  相似文献   

10.
以2-巯基吡啶(PySH)为氧化还原活性介质,以聚乙烯醇(PVA)为聚合物基体,采用溶液共混法制备了PVA-H2SO4-PySH凝胶电解质,研究了PySH添加量对凝胶电解质离子电导率的影响,并组装了活性炭电极超级电容器,利用循环伏安、恒流充放电、交流阻抗谱和自放电等测试对超级电容器电化学性能进行了表征。结果表明,PySH的引入提高了凝胶电解质的离子电导率,同时也改善了超级电容器的电化学性能,在相同电流密度下,超级电容器电极比电容由137F/g提高为394F/g,能量密度由3.6Wh/kg提高到12.4Wh/kg,经过3000次充放电循环后比电容保持率为89%。  相似文献   

11.
本研究以空腔细胞组成的栓皮栎为原料, KOH为活化剂制备了具有多孔结构的栓皮栎软木基多孔活性炭。以此方法制得的活性炭呈薄片状外形, 最大比表面积达到2312 m 2/g, 具有特殊的微孔-介孔结构。在呈碱性的KOH三电极体系中, 0.1 A/g电流密度时比电容达296 F/g; 两电极体系中, 5 A/g时的比电容达到201 F/g, 循环5000次后电容保持率达99.5%。在呈中性的Na2SO4两电极体系中, 电流密度0.5 A/g (174 F/g)至50 A/g (140 F/g)时电容保持率达80.5%, 倍率性能良好, 能量密度高达19.62 Wh/kg。  相似文献   

12.
目的以甲壳素纳米纤维、多壁碳纳米管、碳布、吡咯为原料,制备柔性超级电容器复合电极薄膜。方法先利用化学氧化法提高碳布的表面粗糙度,再通过真空抽滤在碳布表面附着甲壳素纳米纤维和多壁碳纳米管,以增加碳布的负载空间,最后通过原位聚合吡咯来增加复合薄膜的电容性能。同时制备氧化碳布/聚吡咯复合薄膜作为对照组。结果制成的氧化碳布/甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合薄膜在扫描速率为5 mV/s时,质量比电容达到了307 F/g,是氧化碳布/聚吡咯质量比电容(175 F/g)的1.75倍;在电流密度为2 A/g时,经过2000次循环后电容保留率为72.3%,库仑效率为73.8%。结论制备的氧化碳布/甲壳素纳米纤维/多壁碳纳米管/聚吡咯薄膜具有较高的比电容和循环稳定性,可以作为超级电容器电极材料应用于物联网行业的有源储能包装。  相似文献   

13.
以农业废料稻壳为碳源,氢氧化钠为活化剂,采用干法两步活化法制备活性炭。X射线衍射分析表明该法能有效去除稻壳中的灰分,提高活性炭的孔隙率。扫描电镜结果表明,活性炭具有发达的孔隙结构。以活性炭制备超级电容器的电极,并组装成扣式电容器。采用恒流充放电、循环伏安、交流阻抗等测定超级电容器的电化学性能,并着重探究了预活化时间对活性炭的结构及电化学性能的影响。结果表明,预活化时间为120 min的活性炭的比电容最大,在0.25 A/g电流密度下,可达219F/g,经过1 000次循环后,其电容保持率仍达85.4%。这表明活性炭电极具有较理想的电容特性,且循环性能稳定。  相似文献   

14.
方勤  杨邦朝 《功能材料》2005,36(12):1889-1891
以石油焦为原料,运用化学活化法制备了超级电容器用高比表面积中孔活性炭。利用XRD、SEM和BET对实验制备的中孔炭进行了分析和表征。以实验制备的活性炭为超级电容器电极材料,利用恒流充放电测试对其电容特性进行了研究。结果表明,实验研制的活性炭的比表面积为1733m^2/g,中孔含量达到60.6%,在150mA/g的电流密度下其比容达到180F/g,而且基于实验研制的活性炭的超级电容器具有低内阻和良好的功率特性。  相似文献   

15.
通过一步水热法制备组氨酸功能化碳点/石墨烯气凝胶(His-CDs/GA)。该材料具有独特的三维多孔结构、丰富的含氮和含氧官能团, 有利于电解液离子的快速扩散和提供更多的活性位点。当GO与His-CDs的质量比为2 : 1时, His-CDs/GA-2在1 A·g -1电流密度下比电容达到304 F·g - 1, 比GA(172 F·g -1)提高了76.7%; 当电流密度从1 A·g -1增加到50 A·g -1, 其比电容保持率为71.4%; 在电流密度10 A·g -1下, 循环充放电30000次后, 比电容仍保留93.5%。由His-CDs/GA组装的对称超级电容器展现出高能量密度(在功率密度为250 W/kg时, 能量密度达到10.14 Wh/kg)和良好的循环性能(在5 A·g -1下循环充放电20000次后, 比电容保持率为88.4%)。结果表明, His-CDs/GA是一种应用前景广阔的超级电容器电极材料。  相似文献   

16.
炭钌复合电极碱性电化学电容器的研究   总被引:1,自引:0,他引:1  
采取溶胶凝胶法在活性炭表面合成RuO2·xH2O,经150℃热处理制得炭钌复合材料。将炭钌复合电极作为碱性电化学电容的正极,研究不同钌含量复合电极的电化学性能,实验证实,当复合电极中的钌质量分数达30%时,其比电容可从纯活性炭电极的241F/g增加到333F/g,且复合电极具有与活性炭电极同样优异的高功率放电特性;随着复合电极中钌含量的增加,电极的比电容也会相应地增加,而当电极中的钌质量分数大于10%后,水合氧化钌的贡献比电容却逐渐下降,并稳定在440F/g左右。  相似文献   

17.
采用气相沉积法和后续的电沉积法制备得到自支撑结构的MnOOH-石墨烯(graphene)-泡沫镍(NF)复合电极。使用XRD、SEM、XPS等方法对样品的物相、形貌和价态等进行表征,通过恒流充放电、循环伏安、交流阻抗等方法对电极的电化学性能进行研究。结果表明:该方法可以成功制备得到具有自支撑结构的MnOOH-graphene-NF复合电极,超薄的graphene层均匀覆盖在NF的表面,微米球状的MnOOH纳米片紧密覆盖在graphene的表面。该自支撑复合结构可以直接用作超级电容器电极进行测试,在5 mol/L KOH溶液中表现出了较大的赝电容储存能力。在0.5 A/g的电流密度下,最大比容量可达934 F/g。当电流密度提高为5 A/g时,比容量仍达771 F/g。当电流密度为2 A/g时,循环5000次后的容量保持率高达98%,库伦效率接近100%,表现出了良好的超级电容性能。本实验提供了一种制备自支撑MnOOH-graphene-NF复合电极的新方法,该复合电极有望成为一种潜在的新型超级电容器电极材料。   相似文献   

18.
A method of in situ integrating carbon nanotubes (CNTs) into activated carbon (AC) matrix was developed to improve the performance of AC as a supercapacitor electrode. Glucose solution containing pre-dispersed CNTs was hydrothermally carbonized to be a char-like intermediate product, and finally converted into a “tube-in-AC” structure by the chemical activation using KOH. The “tube-in-AC” composite had oxygen content of 12.98 wt%, specific surface area of 1626 m2/g and 90% of 1–2 nm micropores. It exhibited capacitance of 378 F/g in the aqueous KOH electrolyte and excellent cyclibility under high current, that is, the capacitance only decreased 4.6% after 2000 cycles at scanning rate of 100 mV/s. These performances of “tube-in-AC” electrode are better than those of commercial AC electrodes, post-mixed with CNTs or carbon black.  相似文献   

19.
纳米碳管与活性炭复合电极电吸附脱盐性能的研究   总被引:1,自引:0,他引:1  
张登松  施利毅  方建慧  代凯 《功能材料》2005,36(8):1245-1247,1250
为考察纳米碳管(CNTs)、活性炭(AC)及其复合电极的电吸附脱盐性能,将其粉末压制成电极,组装成脱盐器,比较电极电吸附脱盐能力和脱盐能耗。结果表明,在活性炭电极中添加纳米碳管有效地降低了电极电阻和脱盐能耗,少量纳米碳管的添加能在一定程度上提高其电极比表面积、孔容以及在盐水中的比电容;当复合电极中纳米碳管的含量为10%时,其电极在盐水中的电吸附比电容达到113.5F/g,其电极脱盐效果最为显著,其脱盐耗能比活性炭电极降低约67%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号