首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Core-shell structural composites are promising to quench the desire for low-cost, lightweight and multifunctional magnetic materials, but the fabrication of highly pure shell nanoparticles with a desired morphology on a heterogeneous nuclear is still a big challenge. This study gives a successful illustration by in-situ synthesizing BaFe12O19 nanoparticles as a shell on Al2O3 core powders using BaCl2 and FeCl3 as precursors, instead of commonly used Ba(NO3)2 and Fe(NO3)3, by a modified heterogeneous precipitation process followed by calcination for crystallization. After calcination of the precipitants from the raw precursor mixture of BaCl2:FeCl3 for 1:10 at 800?°C, and for 1:8.5 at 900?°C, respectively, pure BaFe12O19 formed on pristine Al2O3, mostly with a hexagonal plane, about 100–200?nm in basal diameter and 20–100?nm in thickness. The highest saturation magnetization and coercivity of the coated Al2O3 @?BaFe12O19 powders was 23.3?emu/g and 5149?Oe, quite higher than that of the direct-mixed Al2O3-BaFe12O19 composite powder, and BaFe12O19-containing composites reported in literature, which could be attributed to the hexagonal shape of BaFe12O19 and uniform shell dispersion on Al2O3 core. The formation mechanism for the Al2O3@BaFe12O19 powders was discussed in detail.  相似文献   

2.
Atomic layer deposition (ALD) of aluminum oxide thin films on diamond was demonstrated for the first time, and the film properties as a gate insulator for diamond field effect transistor (FET) were examined. The interface between the aluminum oxide and the diamond was abrupt, and the ratio of aluminum to oxygen in the film was confirmed to be stoichiometric by Rutherford back scattering. Even a bumpy surface of polycrystalline diamond film was conformally covered by the Al2O3 films. To evaluate the feasibility of the film for FET gate insulator, the electrical characteristics of the Al2O3 films deposited by ALD on diamond were measured using metal–insulator–semiconductor structure. It was found that the Al2O3 films deposited by ALD were better than those deposited by conventional methods, which indicates that the ALD-Al2O3 films are feasible for gate insulators of diamond FETs.  相似文献   

3.
This work explores the possibility of using embedded micron-sized Ti particles to heal surface cracks in alumina and to unravel the evolution of the crack filling process in case of pure solid-state oxidation reactions. The oxidation kinetics of the Ti particles is studied and the results are applied in a simple model for crack-gap filling. An activation energy of 136?kJ/mol is determined for the oxidation of the Ti particles having an average particle size of 10?µm. The almost fully dense alumina composite containing 10?vol% Ti has an indentation fracture resistance of 4.5?±?0.5?MPa?m1/2. Crack healing in air is studied at 700, 800 and 900?°C for 0.5, 1, and 4?h and the strength recovered is measured by 4-point bending. The optimum healing condition for full strength recovery is 800?°C for 1?h or 900?°C for 15?min. Crack filling is observed to proceed in three steps i.e., local bonding at the site of an intersected Ti particle, lateral spreading of the oxide and global filling of the crack. It is discovered that, although significant strength recovery can be attained by local bonding of the intersected particles, full crack filling is required to prevent crack initiation from the damaged region upon reloading. The experimental results observed are in good agreement with the predictions of a simple discrete crack filling/healing model.  相似文献   

4.
This study investigates the effect of ZrO2 on phase transformation of alumina. Alumina and alumina–zirconia composite powders were produced by the precipitation method from aluminum sulfate and zirconium sulfate precursors. Precipitates obtained at 15 °C were dried at 80 °C for 72 h, and then calcinated at four different temperatures; 1000 °C, 1100 °C, 1200 °C and 1300 °C for 1 h. Powders calcinated at 1300 °C were pressed uniaxially and sintered at 1600 °C for 1 h. XRD and DSC analyses showed that the presence of zirconia retarded the transformation to α-alumina. SEM studies on the powders calcinated at 1300 °C revealed that both alumina and alumina–zirconia particles were 100–300 nm in size and of near spherical shape. Zirconia additions inhibited abnormal grain growth of alumina and provided homogeneous, equaxied grain structure.  相似文献   

5.
The densification behaviors of Al2O3–Cr2O3/Cr3C2 nanocomposites prepared by a Spark Plasma Sintering (SPS) were investigated in this work. The initial powders used for sintering were Al2O3–Cr2O3, which were prepared by metal organic chemical vapor deposition (MOCVD) in a spout bed. Different colors of the compacts such as green, purple and black were observed after densification process at different SPS temperatures from 1200 °C to 1350 °C. These changes of color were relevant to the existence of secondary phase of green Cr2O3, pink solid solution of Cr2O3–Al2O3 and black Cr3C2, which were formed under the different SPS temperature. The secondary phase of Cr2O3 retarded the processing of densification for spark plasma sintering at 1200 °C. The Cr2O3 reacted with Al2O3 to form solid solution of Cr2O3–Al2O3 and with carbon to form Cr3C2 as sintering temperature increased to 1350 °C. The characteristics of high heating rate, shorter sintering time for SPS and the formation of secondary phase of Cr3C2 effectively reduced the substrate's grain growth, making Al2O3–Cr2O3/Cr3C2 nanocomposites with small grain size.  相似文献   

6.
Catalytic properties of supported gallium oxides have been examined for the selective reduction of NO by CH4 in excess oxygen. The activity was greatly affected by the support; Ga2O3/Al2O3 (Al2O3 supported Ga2O3) and Ga2O3–Al2O3 mixed oxide exhibited high activity and selectivity as comparable to Ga-ZSM-5, while unsupported Ga2O3 and the other supported Ga2O3 were ineffective. For Ga2O3/Al2O3, the activity changed with Ga2O3 content, and was highest at about 30 wt% Ga2O3, which corresponds to a theoretical monolayer coverage. Gallium oxide highly dispersed on Al2O3 is considered to be responsible for the high activity and selectivity. The reaction characteristics of Ga2O3/Al2O3 were studied and compared with Ga-ZSM-5 and Co-ZSM-5. Ga2O3/Al2O3 exhibited the highest activity and selectivity at high temperature. In addition, Ga2O3/Al2O3 showed higher tolerance against water than Ga-ZSM-5. C3H8 and C3H6 were also evaluated as reducing agents, and Ga2O3/Al2O3 showed higher activity than Ga-ZSM-5 above 723 K achieving almost complete reduction of NO to N2.  相似文献   

7.
The oxidation-resistance of thin film sensors, particularly at high temperatures, is critical for the lifetime and performance of the sensor. The preparation and oxidation-resistance of an Al2O3/ZrBN-SiCN/Al2O3 composite film with a sandwich-structure was performed using reactive magnetron sputtering. The microstructure evolution of the composite film is examined herein using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analysis. Oxygen diffusion was significantly inhibited by the formation of crystalline Al2SiO5 and Zr-B-C amorphous phase inside the composite film. The Pt-13%Rh/Pt thin film thermocouple (TFTC) with the Al2O3/ZrBN-SiCN/Al2O3 composite film as a protective layer was fabricated and calibrated. Both the stability and lifetime of the TFTC was significantly enhanced for temperatures up to 1000?℃. The test error of the TFTC was reduced by half, compared with that of the TFTC with the Al2O3 protective layer, indicating an excellent oxidation-resistant performance of the composite film.  相似文献   

8.
Different sulphur trap materials based on mesoporous Al2O3 supports modified with the storage component Ca or Ba and the oxidation components Pt or Cu or Mn were prepared and the SO2 uptake behaviour examined in the temperature range 50–600 °C. A comparison between the different oxidation components shows that the presence of Pt is not a necessary precondition for attaining a good storage behaviour under these test conditions. Mn is the most suitable oxidation component.

Tests performed over four temperature cycles show that the removal efficiency for SO2 gradually decreases over the course of temperature cycles. Moreover, a progressive diminution of the SO2 uptake is observed especially in the lower temperature range during the temperature cycles. A further modification with Na prevents this drawback. Especially a distinct improvement is observed with the Ca-containing material. It stored 22 wt.% sulphate during the four temperature cycles. This material is regarded as being most suitable for application as sulphur trap material.  相似文献   


9.
10.
Two types of layer-by-layer films of myoglobin (Mb) and Al2O3 were assembled on different surfaces and compared in Mb electrochemistry and bioelectrocatalysis. One type, designated as {SG-Al2O3/Mb}n, was assembled by alternate deposition of Al2O3 by vapor-surface sol-gel method from liquid aluminum butoxide and Mb by adsorption from its solution. Another type, designated as {NP-Al2O3/Mb}n, was constructed by alternate adsorption of Al2O3 nanoparticles and Mb from their dispersion or solution in the conventional layer-by-layer way. Quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV) were used to monitor the growth of the two types of {Al2O3/Mb}n films. UV-vis and IR spectroscopy demonstrated that Mb in both types of {Al2O3/Mb}n films retained its near native structure. While both Mb films assembled on pyrolytic graphite (PG) electrodes exhibited a pair of well-defined, nearly reversible CV reduction-oxidation peaks for Mb heme Fe(III)/Fe(II) redox couple and good electrocatalytic reactivity toward reduction of oxygen and hydrogen peroxide, the {SG-Al2O3/Mb}n films demonstrated distinct advantages over the {NP-Al2O3/Mb}n films in larger maximum surface concentration of electroactive Mb and better biocatalytic performances. This may be mainly attributed to the higher porosity of {SG-Al2O3/Mb}n films than that of {NP-Al2O3/Mb}n films, which may be beneficial to counterion transport in the charge-hopping mechanism and the diffusion of catalytic substrates through the films.  相似文献   

11.
In this work we successfully obtained freeze-cast alumina (Al2O3) and magnesium aluminate spinel (MgAl2O4) samples. Camphene was used as the freezing vehicle in this study. The specimens prepared herein were examined by Archimedes tests, scanning electron microscopy, and X-ray powder diffraction. Cold crushing tests were also carried out at room temperature. It was observed that the pore structure of Al2O3 samples can be tailored by changing the solid loading and freezing rate; the higher the solid loading and freezing rate, the finer the pore structure of the freeze-cast sample. MgAl2O4-based specimens were fabricated by keeping the solid loading in the starting slurry at 30 vol% and using liquid nitrogen as the cooling agent. The material obtained from a 60 Al2O3?40 MgO slurry showed a spinel amount of about 90%, an expressive total porosity (63 ± 3%), and a significant cold crushing strength (58 ± 6 MPa). In addition, this material exhibited the finest pore structure among the composition studied herein, showing a mean pore size of about 4 µm.  相似文献   

12.
The purpose of the work to study biodiesel production by transesterification of Jatropha oil with methanol in a heterogeneous system, using alumina loaded with potassium nitrate as a solid base catalyst. Followed by calcination, the dependence of the conversion of Jatropha oil on the reaction variables such as the catalyst loading, the molar ratio of methanol to oil, reaction temperature, agitation speed and the reaction time was studied. The conversion was over 84% under the conditions of 70 °C, methanol/oil mole ratio of 12:1, reaction time 6 h, agitation speed 600 rpm and catalyst amount (catalyst/oil) of 6% (w). Kinetic study of reaction was also done.  相似文献   

13.
Al2O3 nanopowders were synthesized by a simple chitosan-polymer complex solution route. The precursors were calcined at 800–1200 °C for 2 h in air. The prepared samples were characterized by XRD, FTIR and TEM. The results showed that for the precursors prepared with pH 3–9 γ-Al2O3 and δ-Al2O3 are the two main phases formed after calcination at 800–1000 °C. Interestingly, when the precursor prepared with pH 2 was used, α-Al2O3 was formed after calcination at 1000 °C, and pure α-Al2O3 was obtained after calcination at 1200 °C. The crystallite sizes of the prepared powders were found to be in the range of 4–49 nm, as evaluated by the XRD line broadening method. TEM investigation revealed that the Al2O3 nanopowders consisted of rod-like shaped particles and nanospheres with particle sizes in the range of 10–300 nm. The corresponding selected-area electron diffraction (SAED) analysis confirmed the formation of γ- and α-Al2O3 phases in the samples.  相似文献   

14.
Simultaneous achievement in high solid content and high microsphere yield is deemed a challenge in the fabrication of monodisperse microspheres by precipitation polymerization.We herein demonstrate that micro-sized monodisperse poly(methacrylic monomer-divinylbenzene)microspheres containing epoxy,lauyl,carboxyl and hydroxyl functions can be fabricated by solvothermal precipitation co-polymerization at 20%(mass)monomer loading with over 94%microsphere yield.The morphology and porosity of the obtained particles can be readily tuned by cosolvent-acetonitrile binary solvents.Addition of a small amount of cosolvent that has similar solubility parameter to that of the functional monomer can significantly improve the monodispersity of the obtained microspheres.When tetrahydro-furan was used as the co-solvent,the surface area of the highly porous microspheres achieved higher than 400 m2.g-1.Solvothermal precipitation co-polymerization can be expected in scale-up fabrication of var-ious monodisperse functional microspheres free of any surfactant and additive.  相似文献   

15.
Alumina encapsulation on SrAl2O4: Eu2+, Dy3+ phosphors by a new type of chemical precipitation process was reported for the first time to the best of our knowledge. X-ray fluorescent measurements revealed that using glycol instead of the distilled water as the disperse medium is helpful to alumina encapsulation. Scanning electron micrographs and BET measurements showed that a dense and homogeneous off-white alumina layer was formed on the phosphor surface after encapsulation. Water resistance and heat resistance measurements showed that when the encapsulation amount reached to 5 wt.% (fed value), the encapsulated phosphors began to show good water resistance and heat resistance with little loss of persistent phosphorescence.  相似文献   

16.
The present work has been undertaken to tailor Pt/Al2O3 catalysts active for NO oxidation even after severe heat treatments in air. For this purpose, the addition of Pd has been attempted, which is less active for this reaction but can effectively suppress thermal sintering of the active metal Pt. Various Pd-modified Pt/Al2O3 catalysts were prepared, subjected to heat treatments in air at 800 and 830 °C, and then applied for NO oxidation at 300 °C. The total NO oxidation activity was shown to be significantly enhanced by the addition of Pd, depending on the amount of Pd added. The Pd-modified catalysts are active even after the severe heat treatment at 830 °C for a long time of 60 h. The optimized Pd-modified Pt/Al2O3 catalyst can show a maximum activity limited by chemical equilibrium under the conditions used. The bulk structures of supported noble metal particles were examined by XRD and their surface properties by CO chemisorption and EDX-TEM. From these characterization results as well as the reaction ones, the size of individual metal particles, the chemical composition of their surfaces, and the overall TOF value were determined for discussing possible reasons for the improvement of the thermal stability and the enhanced catalytic activity of Pt/Al2O3 catalysts by the Pd addition. The Pd-modified Pt/Al2O3 catalysts should be a promising one for NO oxidation of practical interest.  相似文献   

17.
Al2O3/diopside ceramic composites with good mechanical properties were prepared by uniaxial hot-pressing and their biological activity in simulated body fluid was studied by SEM, XRD, FT-IR and EPMA. SEM micrographs showed a lath-like apatite layer to form on the soaked composite surface, whose good biological activity may be of some promise for biomedical application.  相似文献   

18.
Silicon compounds in raw materials are the main reason for the low HF/HCl acid resistance of alumina ceramics. Y2O3 can improve the acid resistance of alumina ceramics. This work aimed to reveal the mechanisms of the effects of Y2O3 on the form of Si and the durability of the ceramic. An experiment on a high-temperature reaction between Y3Al5O12 and a polycrystalline alumina ceramic was designed. The effect of corrosion time on the acid solubility of the alumina ceramic was investigated. The results show that Si can dissolve in Y3Al5O12 to generate solid solutions, impeding the generation of Si-containing compounds with bad acid resistance, and decreasing the content of amorphous Si. The acid solubility of the ceramic was only 0.95%, even when the corrosion time was extended to 60 times the industry standard. This revelation of the acid resistance mechanisms can provide a new idea for designing corrosion-resistant ceramics.  相似文献   

19.
Cu++ ion containing solid polymer electrolytes exhibit interesting electrochemical properties. In particular, the polymer electrolyte PEO9:Cu(CF3SO3)2 made by complexing copper triflate (CuTf2) with PEO appears to show scientifically intriguing transport properties. Although some copper ion transport in these systems has been seen from plating stripping processes, the detailed mechanism of ionic transport and the species involved are yet to be established. In order to obtain enhanced ionic conductivities and also to contribute towards understanding the ionic transport process in Cu++ ion containing, PEO based composite polymer electrolytes, we have studied the system PEO9: CuTf2: Al2O3 incorporating 10 wt.% of alumina filler particles of grain size 10 μm, 37 nm, 10–20 nm and also particles of pore size 5.8 nm. Thermal and electrical measurements show that the system remains amorphous down to room temperature. The composite electrolyte is predominantly an ionic conductor with electronic conductivity less than 2%. The triflate (CF3SO3) anions appear to be the dominant carriers. The presence of alumina grains has enhanced the conductivity significantly from room temperature up to 100 °C. The nano-porous grains with 5.8 nm pore size and 150 m2/g specific surface area exhibited the maximum conductivity enhancement. This enhancement has been attributed to Lewis acid–base type surface interactions of ionic species with O2− and OH groups on the filler grain surface.  相似文献   

20.
Thin films of Al2O3 and doped Al2O3 were prepared on a glass substrate by dip coating process from specially formulated ethanol sols. The morphologies of the unworn and worn surfaces of the films were observed with atomic force microscope (AFM) and scanning electron microscope (SEM). The chemical compositions of the obtained films were characterized by means of X-ray photoelectron spectroscopy (XPS). The tribological properties of obtained thin films sliding against Si3N4 ball were evaluated and compared with glass slide on a one-way reciprocating friction tester. XPS results confirm that the target films were obtained successfully. The doped elements distribute in the film evenly and exist in different kinds of forms, such as oxide and silicate. AFM results show that the addition of the doped elements changes the structure of the Al2O3 films, i.e., a rougher and smoother surface is obtained. The wear mechanisms of the films are discussed based on SEM observation of the worn surface morphologies. As the results, the doped films exhibit better tribological properties due to the improved toughness. Sever brittle fracture is avoided in the doped films. The wear of glass is characteristic of brittle fracture and severe abrasion. The wear of Al2O3 is characteristic of brittle fracture and delamination. And the wear of doped Al2O3 is characteristic of micro-fracture, deformation and slight abrasive wear. The introduction of ZnO is recommended to improve the tribological property of Al2O3 film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号