首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Compacts of TiB2 with densities approaching 100% are difficult to obtain using pressureless sintering. The addition of SiC was very effective in improving the sinterability of TiB2. The oxygen content of the raw TiB2 powder used in this research was 1.5 wt%. X-ray photoelectron spectroscopy showed that the powder surface consisted mainly of TiO2 and B2O3. Using vacuum sintering at 1700°C under 13–0.013 Pa, TiB2 samples containing 2.5 wt% SiC achieved 96% of their theoretical density, and a density of 99% was achieved by HIPing. TEM observations revealed that SiC reacts to form an amorphous phase. TEM-EELS analysis indicated that the amorphous phase includes Si, O, and Ti, and X-ray diffraction showed the reaction to be TiO2+ SiC → SiO2+ TiC. Therefore, the improved sinterability of TiB2 resulted from the SiO2 liquid phase that was formed during sintering when the raw TiB2 powder had 1.5 wt% oxygen.  相似文献   

2.
A mixture of Zr, B4C, and Si powders was adopted to synthesize a ZrB2–SiC composite using the spark plasma sintering–reactive synthesis (SPS–RS) method. SPS treatments were carried out in the temperature range of 1350°–1500°C under a varying pressure of 20–65 MPa with a 3-min holding time. A dense (∼98.5%) ZrB2–SiC composite was successfully fabricated at 1450°C for 3 min under 30 MPa. The microstructure of the composite was investigated. The in situ formed ZrB2 and SiC phases dispersed homogeneously on the whole. The grain size of ZrB2 and SiC was <5 and 1 μm, respectively. A number of in situ formed ultrafine SiC particles were observed entrapped in the ZrB2 grains.  相似文献   

3.
The feasibility of joining of 3-D carbon—carbon (C–C) composites by using B and TiSi2 interlayers has been investigated. The optimum temperature for joining with a B interlayer was determined to be about 1995°C and that for joining with a TiSi2 interlayer was about 1490°C. The shear strengths of the joints made at these optimum temperatures were found to increase with the shear testing temperature up to a point, followed by a decrease at higher temperatures. For C–C specimens bonded at 1995°C with a B interlayer, the maximum joint shear strength (average value 18.35 MPa) was observed at the test temperature of 1660°C. The shear strength of joints produced with a TiSi2 interlayer showed a maximum at the test temperature of 1164°C, with an average value of 34.41 MPa. The B interlayers reacted with C–C composite pieces during joining, and the product of reaction was identified as B4C. In specimens joined with TiSi2 interlayers, the reaction between TiSi2 and C did not go to completion, and the bond interlayer contained TiC, SiC, and TiSi2.  相似文献   

4.
Specimens of ZrB2 containing various concentrations of B4C, SiC, TaB2, and TaSi2 were pressureless-sintered and post-hot isostatic pressed to their theoretical densities. Oxidation resistances were studied by scanning thermogravimetry over the range 1150°–1550°C. SiC additions improved oxidation resistance over a broadening range of temperatures with increasing SiC content. Tantalum additions to ZrB2–B4C–SiC in the form of TaB2 and/or TaSi2 increased oxidation resistance over the entire evaluated spectrum of temperatures. TaSi2 proved to be a more effective additive than TaB2. Silicon-containing compositions formed a glassy surface layer, covering an interior oxide layer. This interior layer was less porous in tantalum-containing compositions.  相似文献   

5.
A novel microstructure of in situ produced TiC/TiB2/MoSi2 composite and its mechanical properties were investigated. The results indicate that TiC/TiB2/MoSi2 composites can be fabricated by reactive hot pressing the mixed powders of MoSi2, B4C, and Ti. A novel microstructure consisting of hollow particles of TiC and TiB2 grains in an MoSi2 matrix was obtained. Grains of in situ produced TiC and TiB2 were much finer, from 100 to 400 nm. During the fracture process, hollow particles relieved crack tip stress, encouraging crack branching and changing the original direction of the main crack. The highest bending strength of this composite achieved was 480 MPa, twice that of monolithic MoSi2, and the greatest fracture toughness of the composite reached 5.2 MPa·m1/2.  相似文献   

6.
Zirconium diboride (ZrB2) was densified (>98% relative density) at temperatures as low as 1850°C by pressureless sintering. Sintering was activated by removing oxide impurities (B2O3 and ZrO2) from particle surfaces. Boron oxide had a high vapor pressure and was removed during heating under a mild vacuum (∼150 mTorr). Zirconia was more persistent and had to be removed by chemical reaction. Both WC and B4C were evaluated as additives to facilitate the removal of ZrO2. Reactions were proposed based on thermodynamic analysis and then confirmed by X-ray diffraction analysis of reacted powder mixtures. After the preliminary powder studies, densification was studied using either as-received ZrB2 (surface area ∼1 m2/g) or attrition-milled ZrB2 (surface area ∼7.5 m2/g) with WC and/or B4C as a sintering aid. ZrB2 containing only WC could be sintered to ∼95% relative density in 4 h at 2050°C under vacuum. In contrast, the addition of B4C allowed for sintering to >98% relative density in 1 h at 1850°C under vacuum.  相似文献   

7.
ZrB2–LaB6 powder was obtained by reactive synthesis using ZrO2, La2O3, B4C, and carbon powders. Then ZrB2–20 vol% SiC–10 vol% LaB6 (ZSL) ceramics were prepared from commercially available SiC and the synthesized ZrB2–LaB6 powder via hot pressing at 2000°C. The phase composition, microstructure, and mechanical properties were characterized. Results showed that both LaB6 and SiC were uniformly distributed in the ZrB2 matrix. The hardness and bending strength of ZSL were 17.06±0.52 GPa and 505.8±17.9 MPa, respectively. Fracture toughness was 5.7±0.39 MPa·m1/2, which is significantly higher than that reported for ZrB2–20 vol% SiC ceramics, due to enhanced crack deflection and crack bridging near SiC particles.  相似文献   

8.
A ZrB2–SiC composite was prepared from a mixture of zirconium, silicon, and B4C via reactive hot pressing. The three-point bending strength was 506 ± 43 MPa, and the fracture toughness was 4.0 MPa·m1/2. The microstructure of the composite was observed via scanning electron microscopy; the in-situ -formed ZrB2 and SiC were found in agglomerates with a size that was in the particle-size ranges of the zirconium and silicon starting powders, respectively. A model of the microstructure formation mechanism of the composite was proposed, to explain the features of the phase distributions. It is considered that, in the reactive hot-pressing process, the B and C atoms in B4C will diffuse into the Zr and Si sites and form ZrB2 and SiC in situ , respectively. Because the diffusion of Zr and Si atoms is slow, the microstructure (phase distributions) of the obtained composite shows the features of the zirconium and silicon starting powders.  相似文献   

9.
Ultrafine ZrB2–SiC composite powders have been synthesized in situ using carbothermal reduction reactions via the sol–gel method at 1500°C for 1 h. The powders synthesized had a relatively smaller average crystallite size (<200 nm), a larger specific surface area (∼20 m2/g), and a lower oxygen content (∼1.0 wt %). Composites of ZrB2+20 wt% SiC were pressureless sintered to ∼96.6% theoretical density at 2250°C for 2 h under an argon atmosphere using B4C and Mo as sintering aids. Vickers hardness and flexural strength of the sintered ceramic composites were 13.9±0.3 GPa and 294±14 MPa, respectively. The microstructure of the composites revealed that elongated SiC grain dispersed uniformly in the ZrB2 matrix. Oxidation from 1100° to 1600°C for 30 min showed no decrease in strength below 1400°C but considerable decrease in strength with a rapid weight increment was observed above 1500°C. The formation of a protective borosilicate glassy coating appeared at 1400°C and was gradually destroyed in the form of bubble at higher temperatures.  相似文献   

10.
Reactive hot pressing of Ti and BN powder mixtures is used to produce dense TiN x –TiB2 composites. The effect of excess Ti along with a small addition, ∼1 wt% Ni, on the reaction and densification of the composite was investigated. A composite of ∼99.9% relative density (RD) was produced at 1200°C at 40 MPa for 30 min with 1 wt% Ni, whereas composites produced without Ni are porous and contain residual reactants. The microstructural studies on composite samples with excess Ti produced at short durations indicate the presence of a transient (Ni–Ti) phase from which Ti is finally removed to form substoichiometric TiN x . The hardness of the dense TiN x –TiB2 composite is ∼22 GPa. The densification mechanism in this system is contrasted with the role of nonstoichiometry in the Zr–B4C system.  相似文献   

11.
The effect of Fe and B4C on the sintering behavior and mechanical properties of TiB2 ceramics have been studied. Sintering was performed in an Ar atmosphere at 2000° using attrition-milled TiB2 powder (mean particle size = 0.8 μm). When a small amount of Fe (0.5 wt%) was added, abnormal grain growth occurred and the sintered density was low. In the case of B4C added along with 0.5 wt% Fe, however, abnormal grain growth was remarkably suppressed, and the sintered density was increased up to 95% of theoretical. But with excess Fe addition (5 wt%), B4C grains did not act as a grain growth inhibitor, and B4C grains were frequently trapped in large TiB2 grains. The best mechanical properties were obtained for the TiB2–10 wt% B4C–0.5 wt% Fe ceramics, which exhibited a three-point bending strength of 400 MPa and a fracture toughness of 5.5 MPa · m1/2.  相似文献   

12.
Preparation of Zirconium Boride Powder   总被引:6,自引:0,他引:6  
An intermediate reaction in the synthesis of ZrB2 powder by the reduction of ZrO2 with B4C and carbon was confirmed through both thermodynamical calculation and experimental results. Because the intermediate product B2O3 was volatile, excess boron should be added to compensate for the boron loss in order to prepare high-purity ZrB2 powder. The synthesis temperatures of the intermediate reaction and carbothermic reduction were, respectively, about 1400 and 1600°C, obtained by experiments. The influence of processing temperature and time on the purity and the particle size of ZrB2 powder was also investigated.  相似文献   

13.
The present work was concentrated mainly on the reaction processes of boro/carbothermal reduction (BCTR) of ZrO2 with B4C and carbon in vacuum, and characterization of morphology and sinterability of the obtained ZrB2 powder. Combining the thermodynamic calculations, X-ray diffraction results, and the trend of furnace pressure with temperature during synthesis, a detailed explanation of the reaction processes of BCTR was developed. Most of the ZrB2 particles obtained at 1650°C presented a nearly spherical morphology, whereas those synthesized at 1750°C showed a nearly columnar morphology with an increased size. Compared with the powder synthesized at 1750°C as well as the commercially additive-free powder used in the reported work, the ZrB2 powder synthesized at 1650°C showed a better sinterability due to its smaller particle size and lower oxygen content.  相似文献   

14.
Pressureless sintering was used to densify ZrB2–SiC ultra-high temperature ceramics. The physical, mechanical, thermal, electrical, and high temperature properties were investigated. This comprehensive set of properties was measured for ZrB2 containing 20 vol% SiC in which B4C and C were used as the sintering aids. The three-point flexural strength was 361±44 MPa and the elastic modulus was 374±25 GPa. The Vickers hardness and fracture toughness were 14.7±0.2 GPa and 4.0±0.5 MPa·m1/2 respectively. Scanning electron microscopy studies of the microstructure of ZrB2–SiC showed that SiC particles were distributed homogenously in the ZrB2 matrix with little residual porosity.  相似文献   

15.
The heating of B4C–YTZP (where YTZP denotes yttria-stabilized zirconia polycrystals) mixtures, under an argon atmosphere, generates B4C–ZrB2 composites, because of a low-temperature (<1500°C) carbide–oxide reaction. Composites derived from mixtures that include ≥15% YTZP are better sintered than monolithic B4C that has been fired under the same conditions. Firing to ∼2160°C (1 h dwell) generates specimens with a bulk density of ≥91% of the theoretical density (TD) for cases where the initial mixture includes ≥15% YTZP. Mixtures that include 30% YTZP allow a fired density of ≥97.5% TD to be attained. The behavior of the B4C–YTZP system is similar to that of the B4C–TiO2 system. Dense B4C–ZrB2 composites attain a hardness (Vickers) of 30–33 GPa.  相似文献   

16.
Corrosion of Ceramics in Aqueous Hydrofluoric Acid   总被引:1,自引:0,他引:1  
A variety of commercially available ceramic-based oxides, carbides, nitrides, and borides were evaluated for chemical attack in an azeotropic aqueous hydrofluoric acid (HF) test protocol at 90°C. Weight change measurements and microstructure analysis showed that HF corrosion in polycrystalline ceramics generally occurred at grain boundaries by the dissolution of grain boundary phases although the bulk single crystal may inherently resist attack. Virtually all commercially prepared polycrystalline oxide ceramics (i.e., Al2O3, TiO2, ZrO2) and nonoxide ceramics (i.e., Si3N4, AlN, BN) were extensively corroded while polycrystalline pure carbides (i.e., SiC, TiC, B4C, WC) resisted corrosion. Equilibrium thermodynamic calculations show that these materials are soluble in HF; however, the kinetics of dissolution are slow enough in some cases to permit useful engineering lifetimes.  相似文献   

17.
The effect of SiC concentration on the liquid and solid oxide phases formed during oxidation of ZrB2–SiC composites is investigated. Oxide-scale features called convection cells are formed from liquid and solid oxide reaction products upon oxidation of the ZrB2–SiC composites. These convection cells form in the outermost borosilicate oxide film of the oxide scale formed on the ZrB2–SiC during oxidation at high temperatures (≥1500°C). In this study, three ZrB2–SiC composites with different amounts of SiC were tested at 1550°C for various durations of time to study the effect of the SiC concentration particularly on the formation of the convection cell features. A calculated ternary phase diagram of a ZrO2–SiO2–B2O3 (BSZ) system was used for interpretation of the results. The convection cells formed during oxidation were fewer and less uniformly distributed for composites with a higher SiC concentration. This is because the convection cells are formed from ZrO2 precipitates from a BSZ oxide liquid that forms upon oxidation of the composite at 1550°C. Higher SiC-containing composites will have less dissolved ZrO2 because they have less B2O3, which results in a smaller amount of precipitated ZrO2 and consequently fewer convection cells.  相似文献   

18.
The hot hardness of TiB2, W2B5, ZrB2, HfB2, ZrO2, Al2O3, NbC, Tic, TaC1- x , HfG1+ x , (Ta0.8Hf0.2)C1+ x , W2C, and (W0.65Cr0.14Re0.14Ta0.07)2C of <95% density was determined to temperatures approaching 1900°C. In all cases, the hardness decreased rapidly with increasing temperature. The data are compared to those available in the literature.  相似文献   

19.
The composites synthesized with three kinds of B4C particles mainly consist of TiC, TiB2, and the alloy austenite containing Ni element. Ceramic particulate sizes in the composites synthesized with ∼3.5 and ∼45 μm B4C particles are larger than that synthesized with ∼140 μm B4C particle. No pores are found between the reinforcing region and matrix in the composites synthesized with ∼3.5 and ∼45 μm B4C particles, while some large pores exist in the composites synthesized with ∼140 μm B4C particle. With the decrease of B4C particle size, the pores in the composites become fewer and the hardness and wear resistance of the composites increase.  相似文献   

20.
Ti/Si/2TiC powders were prepared using a mixture method (M) and a mechanical alloying (MA) method to fabricate Ti3SiC2 at 1200°–1400°C using a pulse discharge sintering (PDS) technique. The results showed that the Ti3SiC2 samples with <5 wt% TiC could be rapidly synthesized from the M powders; however, the TiC content was always >18 wt% in the MA samples. Further sintering of the M powder showed that the purity of Ti3SiC2 could be improved to >97 wt% at 1250°–1300°C, which is ∼200°–300°C lower than that of sintered Ti/Si/C and Ti/SiC/C powders using the hot isostatic pressing (HIPing) technique. The microstructure of Ti3SiC2 also could be controlled using three types of powders, i.e., fine, coarse, or duplex-grained, within the sintering temperature range. In comparison with Ti/Si/C and Ti/SiC/C mixture powders, it has been suggested that high-purity Ti3SiC2 could be rapidly synthesized by sintering the Ti/Si/TiC powder mixture at relatively lower temperature using the PDS technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号