首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以新城金矿V~#矿体-580中段采场为研究对象,利用FLAC~(3D)软件进行采场稳定性模拟研究,计算分析6种不同采场结构参数引起的采场顶板应力、位移变化特征,得出最佳采场结构参数。结果表明:在二步矿柱开挖过程中,二步矿柱周围的介质向空区位移变形,采空区中间产生较大变形,顶板垂直位移随着二步矿柱的开采逐渐增大,但最终趋于稳定。在6种方案回采过程中,方案2和方案5与其他方案相比,顶板位移、应力相对较小。基于矿山高效回采及成本考虑,建议采用分层高度5m,采场宽度8m,矿房超前一步矿柱6分层的采场方案。  相似文献   

2.
为了保证三山岛金矿二步采场的生产能力和开采安全性, 采用三维有限元方法对不同结构参数的二步采场开采稳定性进行分析,优选安全合理的采场参数。通过计算和分析不同结构参数的二步采场在开采过程中顶板和上盘围岩的应力、位移变化特征,得出不同参数的采场稳定情况。结果表明:当采场高度为12 m时,顶板和上盘围岩的拉应力和位移都较大,采场的稳定性较差;当采场宽度大于10 m时,顶板和上盘围岩的拉应力和位移的变化率呈增长趋势,采场稳定性逐渐变差。因此,建议二步采场宽度为10 m,高度10 m。将优化结果应用于工程实践,表明该参数安全合理,保证了矿山安全高效开采。  相似文献   

3.
上向分层回采采场稳定性数值模拟研究   总被引:1,自引:0,他引:1  
根据凡口铅锌矿不同采场顶板围岩条件, 分别建立了典型采场模型Ⅰ(采场顶板为矿体)和模型Ⅱ(采场顶板为充填体), 采用有限元分别对两模型上向水平分层充填回采的整个过程进行了分步模拟, 获得了开挖过程中采场顶底板、侧壁的应力分布及位移变化情况, 对比分析了不同采场顶板围岩条件下分层开采对采场稳定性的影响。研究表明, 采场顶板为充填体的采场回采过程中应力、位移变化量均大于采场顶板为矿体的采场。因此, 为确保安全回采, 回采后期必须做好顶板支护工作。研究结果为优化采场结构参数和指导地压控制提供了可靠的理论依据。  相似文献   

4.
矿山开采深度的增加使矿山在生产过程中面临更多的不确定因素,合理的采场结构参数将有效降低采场冒顶事故率。为了确定出合理、统一的采场结构参数范围,采用Mathews稳定图法和数值模拟对高峰矿深部采场结构参数进行研究,分析不同采场结构参数下的采场极限暴露面积、应力云图、位移云图和塑性区分布云图。结果表明,当采场宽度取8 m时,极限暴露面积为400 m2;当回采方式为同时回采,分层高度为4 m和12 m时,均建议采场宽度≤8 m;采用超前回采时,采场最大主应力的最大值均超过了安全警戒线。因此,为了保证回采过程的安全性,建议采场结构参数为:采场宽度范围为7~8 m,采场长度为矿体厚度,约为40 m,分层高度为4~12 m,回采方式为同时回采。  相似文献   

5.
颜克俊 《采矿技术》2007,7(4):1-4,9
采场结构参数与回采安全直接相关,合理的采场结构参数是实现深部矿体安全高效开采及控制地压危害的重要保障.采用三维有限元数值模拟分析了凡口铅锌矿深部采场不同回采方式及考虑温度变化和冲击地压情况下的结构参数,并进行了优化研究,得出凡口深部矿体的合理采场结构参数为采场宽度8~10 m,分层高度不大于5 m.  相似文献   

6.
为保障破碎矿体采场稳定,减少矿石损失和贫化,实现安全高效开采,以某铁矿破碎采场为背景,利用FLAC3D分析不同宽度采场的稳定性,确定合理的采场结构参数。通过计算和分析不同宽度的矿房在开采过程中顶板和侧帮的应力、位移和塑性破坏区变化特征,得出不同结构参数采场的稳定情况。结果表明,当采场宽度超过14 m时,顶板的应力和位移都较大,采场的稳定性变差;随着采场宽度的增大,侧帮的应力和位移变化范围逐渐减小,有利于采场的稳定;当采场宽度大于12 m时,两帮容易发生剪切滑移破坏,采场的稳定性变差。因此,建议采场宽度选择为10~12 m。工程实践表明,优化选择的采场结构参数合理。  相似文献   

7.
采场结构参数及充填配比优化的FLAC3D数值模拟   总被引:1,自引:0,他引:1  
为了保证矿山安全高效开采,通过分析影响采场稳定性关键因素及破坏机理,应用数值模拟法对二步矿柱在不同结构参数和两侧不同充填配比开采条件的稳定性进行分析,优选出安全高效的一步采场充填配比和二步采场的结构参数。采用FLAC3D数值模拟,计算和分析在开采过程中,不同结构参数和两侧不同充填配比的采场顶板的应力、应力分布区域面积及位移变化特征,得出各不同方案的采场顶板稳定情况。结果表明:采场受两侧充填体配比的影响较为明显,一步采场灰砂比由1∶6改变到1∶8时,对二步采场的稳定性影响较小;灰砂比小于1∶8和采场宽度大于18 m时,采场顶板的拉应力和位移的变化率逐渐变大,采场的稳定性迅速降低。因此,综合矿山生产安全、高效及成本考虑,建议一步采场充填配比为1∶8、二步采场的宽度为18 m。  相似文献   

8.
山东招远大尹格庄金矿的点柱式上向水平分层充填法存在矿石损失率大的问题,而且在矿山进入深部开采后,地压逐渐增大,造成部分矿房回采过程出现大面积的冒落及部分矿柱压裂破坏,资源回采困难、作业安全风险高。综合考虑大尹格庄金矿床的开采技术条件,在保证矿山安全生产的前提下,为尽可能减少采矿过程中的矿石损失,降低安全生产的风险,选择采用盘区交错式上向水平分层充填法。为保证采场稳定性,采用数值模拟的手段对该方法的采场宽度进行了优化研究,计算并分析了9种方案的采场围岩应力、顶板下沉位移及开挖后塑性区分布,最终确定一步骤采场宽度为7m~8m,二步骤采场宽度为6m~7m,在生产过程中,矿岩稳固性较好时,取大值;稳固性差时,取小值。  相似文献   

9.
针对梅山铁矿塌落界线外矿体开采技术的特点,提出了采用分段空场嗣后充填法,分析了底部结构的布置和回采工艺特点等,并结合自然平衡拱理论,采用计算机仿真模拟技术,对分段空场嗣后充填法回采过程中的围岩应力、位移变化规律及塑性区分布情况进行了计算分析,揭示出顶板岩层拉应力是影响该采场稳定性至关重要的因素。将顶板岩层所受的最大拉应力作为衡量采场稳定性的指标,应用正交试验法对不同采场结构参数进行优化,得出梅山铁矿塌落界线外矿体采用矿房采场跨度14 m、矿柱采场跨度10 m和顶板厚度8 m的结构参数,能保证安全开采的需要。  相似文献   

10.
黄聪  魏超城  丘永富 《中国矿业》2023,(11):168-177
随着新疆阿舍勒铜矿采深逐渐增加,矿山深部岩体愈加破碎,采场稳定性难以得到保障。为了确保深部矿床安全、高效开采,需要在工程地质调查和岩石力学参数试验的基础上,对采场结构参数与回采顺序进行优化。使用修正Mathews稳定图法,对+150 m中段采场顶板和边帮开展稳定性分析,分析结果表明:当中段高度为50 m,采场长度为矿体厚度的情况下,只需控制采场宽度小于12 m即可保证采场顶板和上盘围岩总是处于无支护稳定区,满足采场安全生产要求。为了确定采场的合理回采顺序,使用FLAC3D有限元模拟软件分别对4种不同回采顺序进行了模拟分析,对比了不同回采顺序下采场的应力、位移、塑性区,最终确定最优回采方案为从矿体南端向北端依次回采。研究结果可为阿舍勒铜矿回采设计提供依据,并能为国内同类矿山的回采设计提供参考。  相似文献   

11.
基于多孔介质流固耦合理论,以白象山铁矿下层局部疏干条件下的带压充填开采为原型,选取4线以北、7线以南"天窗"下部矿体的开采作为评价地质模型,建立了渗流条件下矿山"采场围岩系统"的三维数值模型。并根据正交试验设计的方法制定了不同采场跨度、进路宽度、分层开采高度和充填体类型的四因素三水平的9个采场结构参数开采模拟方案,选取顶板最大沉降量、顶板最大拉应力和顶板塑性区最大破坏高度作为评价采场顶板稳定性的指标,通过对不同方案模拟结果的分析,确定了各采场结构参数因素对顶板稳定性影响作用的大小以及合理的开采方案。  相似文献   

12.
针对高峰矿深部急倾斜厚大矿体采用机械化上向水平分层充填法时的采场宽度优化问题,运用数值分析软件FLAC3D对不同宽度条件下的采场进行开挖模拟,通过分析不同宽度条件下采场顶板最大拉应力和最大下沉位移的变化特征,得出了不同宽度下的采场稳定性情况。结果表明:相比采场宽度6 m和8 m,采场宽度10 m时顶板拉应力较大,容易发生拉伸破坏,采场稳定性差;顶板最大下沉位移与采场宽度正相关,但3种宽度下的顶板最大下沉位移均在允许范围(50 mm)之内。因此,采场宽度可取6 m和8 m,但为了高效回采,最适宜高峰矿深部急倾斜厚大矿体的采场宽度为8 m。  相似文献   

13.
白象山铁矿的水文地质条件复杂,采用分层进路充填法开采。利用FLAC3D模拟软件建立流固耦合模型,分析了采场跨度、进路宽度、分层高度和充填体类型对采场顶板稳定性的影响。对模拟结果的极差分析表明,采场跨度对采场顶板的最大沉降量、最大拉应力和塑性区破坏高度起决定性作用,其次是充填体类型、分层高度和进路宽度;最优方案为采场跨度30m,进路宽度10m,分层高度10m,用灰砂比1∶8的胶结尾砂进行充填。  相似文献   

14.
邬金  李元辉  司呈斌  徐帅 《金属矿山》2014,32(11):11-15
合理的采场结构参数可使采场处于有利的力学状态,使围岩的应力、应变分布趋于均匀化,在保证开采系统稳定和生产安全的前提下,减少支护工作量,提高采矿强度和生产效率。在深入分析思山岭铁矿地质概况与采矿方法的基础上,对影响矿房回采稳定性的矿房高度、矿房宽度、采场长度、矿柱宽度、矿柱充填方式等5个关键因素进行2水平正交设计,获得8种试验方案。运用大型岩土软件FLAC3D对盘区内不同方案的采场结构参数进行数值模拟研究,分析其在不同结构参数下应力、位移、塑性区等特征,初步得出采场处于最有利力学状态时的结构参数方案(采场高60 m、采场长60 m,矿房宽18 m、矿柱宽20 m的参数方案)。计算结果表明:回采过程中,采场长度对顶板应力和顶板位移的影响最大,采场越长,应力值越大,且压应力主要在盘区间柱集中,顶底板处出现拉应力集中。分析结果可为盘区矿房矿柱的安全高效回采提供技术支持。  相似文献   

15.
吴杰  侯克鹏 《矿冶》2018,27(1):18-20
根据大红山铜矿西矿段矿体赋存的地质条件及现有的开采技术,提出了盘区机械化分条—分层充填联合的采矿方法。初步确定18种回采的方案,选取了FLAC3D数值分析软件进行数值模拟。将各方案的结果进行了对比,选出了最好的回采方案。结果表明,采场结构参数为:用混凝土胶结充填的矿柱宽度6 m,用选矿的尾砂充填的矿房宽度8 m,每个分层的高度4 m;用混凝土胶结充填的矿柱的抗压强度2.5 MPa;开采顺序上下同时回采,间隔100 m时采场的稳定性最好。  相似文献   

16.
大直径深孔空场嗣后充填法是安全高效开采倾斜极厚矿体的有效方法,合理的采场结构参数是维持采场稳定的前提。以Jama铜矿1 000万t/a超大规模地下开采为工程背景,利用Mathews稳定图法计算了采场稳定区间和水力半径,并基于“隔三采一”的开采方案,采用FLAC3D软件开展了4组采场结构参数条件下的采场稳定性数值模拟,从而优选出合理的高中段大采场结构参数。Mathews稳定图法采场顶板、侧帮暴露尺寸与水力半径的关系分析表明,当采场顶板跨度为15 m、中段高度为100 m时,采场长度应小于46 m。数值模拟结果表明:二步骤矿柱宽度从15 m增加至19.5 m时,采场顶板的位移、塑性区体积随着跨度增大而增加,底部结构堑沟的两帮安全系数较低且易发生部分剪切破坏。数值模拟与Mathews稳定图法分析结果一致,确定了大直径深孔空场嗣后充填法的最优采场结构参数为采场长度45 m,一步骤矿房宽15 m,二步骤矿柱宽18 m,采场高100 m。研究结果为实现倾斜极厚矿体高中段大采场安全回采提供了理论支撑。  相似文献   

17.
为确保石人沟铁矿二步采场的生产能力和安全性,采用FLAC3D软件对不同参数的二步采场稳定性进行了分析,得到了安全高效的采场参数。通过分析各参数开采过程中采场顶板的应力和位移变化特征,结合顶板应力与位移分布云图,分析了各参数采场在开采过程中的稳定情况。结果表明:当采场宽为34~35 m时,采场顶板的最大拉应力值超出其极限抗拉强度,且最大拉应力的分布区域占顶板的90%以上,同时顶板最大位移量达45 mm,顶板易发生拉伸破坏而产生冒顶或垮塌危险。因此,综合石人沟铁矿的采场生产能力和安全要求,二步采场的宽度宜设定为30 m。  相似文献   

18.
为了保证罗河铁矿二步采场生产能力和安全性,运用FLAC3D数值模拟软件对不同参数的二步采场稳定性进行分析,获得安全合理的采场参数。通过分析开采过程中各参数采场顶板的应力和位移变化特征,结合顶板应力与位移分布云图,得出各参数采场在开采过程中的稳定情况。结果表明,当采场宽度为19~20 m时,采场顶板的最大拉应力值超出其自身的极限抗拉强度,且拉应力的分布区域占顶板的90%,同时顶板最大位移量达40 mm,顶板易发生拉伸破坏而产生冒顶或垮塌危险。建议二步采场宽18 m,高15 m。  相似文献   

19.
针对金川二矿区深部大体积充填体下下向进路式胶结充填法进路参数合理性的问题,以深部850 m水平中段采场为研究对象,依据Mathews稳定图解法确定了9组不同回采进路宽度和高度的试验方案。通过数值模拟获得了不同方案的采场最大主应力、最大拉应力、平均屈服率和顶板下沉量4项指标,利用响应面法获得了不同进路参数对4项指标的影响程度及变化规律。构建了回采进路参数优化综合评价指标体系,利用层次分析法和熵权法进行组合赋权,并通过模糊综合评价得出金川二矿区深部850 m水平中段采场在进路宽度5~6 m、分层高度4~4.5 m时均能取得较好的综合效益,且回采进路宽度6 m、分层高度4.5 m时的综合效益最大。  相似文献   

20.
超大跨度采场合理的结构参数是矿山实现大规模安全高效开采的保障。在调研矿体赋存特征的基础上,采用FLAC~(3D)软件建立矿体模型并模拟采场的回采过程,分析了开挖过程中围岩的位移变化规律和塑性区域分布情况,以此来评价不同矿柱宽度下采场的稳定性。结果表明:在矿柱宽度分别为10,14,18m的条件下,对应的最大采场宽度分别为26,29,32m;在采场跨度为41 m时,采场失稳;只有矿柱宽度为22m时,采场跨度才可达到41 m。结合矿山330万t/a生产任务,最终优选出的结构参数:矿柱宽度为22m,采场宽度为41m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号