首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
用机械活化-放电等离子烧结(MA-SPS)方法原位制备TiAl-Al2O3材料.MA后得到晶粒度小于25nm的纳米粉体,其中Al2O3起到机械活化和细化晶粒的作用,促使粉体快速纳米化;SPS原位烧结后得到密度为3.73g/cm3的(α2 γ)双相组织,组成相的晶粒度小于130nm.  相似文献   

2.
王志伟  施雨湘 《功能材料》2005,36(11):1794-1797
(Ti-50%(原子分数)AD-10%Al2O3粉体经过球磨的机械活化(MA)后,用放电等离子烧结(SPS)工艺,在烧结的同时进行固化。采用机械活化-放电等离子烧结(MA—SPS)的方法原位烧结制备TiAl—Al2O3块体纳米材料。球磨前后,(Ti-50%(原子分数)AD-10%Al2O3粉体的衍射图(XRD)相似。MA后得到晶粒度〈25nm的纳米粉体,其中Al2O3起到机械活化和细化晶粒的作用,促使粉体快速纳米化。纳米粉体在温度低于800℃、烧结时间〈5min的烧结参数下,烧结成TiAl纳米合金。TiAl纳米合金的微观结构表明,合金有γ-TiAl和α2—Ti3Al双相组织。SPS原位烧结后,得到密度为3.73g/cm^3的(γ+α2)双相组织,组成相的晶粒度〈130nm。  相似文献   

3.
田猛  姜涛  刘卫强  杨芳  岳明  张久兴 《功能材料》2004,35(Z1):2717-2720
采用放电等离子烧结技术对纳米级ZrO2粉体进行致密化研究.运用XRD、SEM、TEM以及显微硬度仪对粉末及块体进行分析.实验结果表明运用放电等离子烧结技术对ZrO2(3Y)粉体进行致密化无法同时实现晶粒度与相对密度的最佳结合.目前,最佳晶粒尺寸100nm左右时相对密度95.8%,最大Kic=11.85MPa·m1/2.  相似文献   

4.
刘雪梅  张久兴  宋晓艳  姜喆  高金萍 《功能材料》2004,35(Z1):3037-3039
放电等离子烧结(Spark Plasma Sintering,简称SPS)是一种新的固体压缩烧结技术,它具有升温速度快、烧结时间短、冷却速度快、外加压力和烧结气氛可控、节能环保等鲜明特点,成为材料发展和组织优化的有力工具.SPS在材料制备中的应用越来越广泛,但现阶段对SPS烧结过程的认识远未形成统一观点.SPS过程中颈部的形成是一个关键的阶段,影响到整个烧结过程.本文针对火花等离子烧结颈部的形成机理进行分析认为(1)在SPS烧结非金属材料过程中颈部的形成机理可能是塑性变形和蠕变;(2)导电材料烧结颈部形成过程中可能有火花放电现象发生,其主要机理可能是熔化和凝固、塑性变形、蠕变.同时,本文以纯铜为例,对其SPS烧结过程和结果进行了分析,对烧结过程中颈部的形成情况进行观察,并给出了解释.  相似文献   

5.
机械合金化和放电等离子烧结制备Y3Al5O12陶瓷   总被引:2,自引:0,他引:2  
采用机械合金化和放电等离子烧结制备YAG陶瓷,研究了球磨时间对原料颗粒大小和烧结合成YAG纯度的影响,并利用x射线衍射(XRD)、扫描电镜(SEM)等手段对反应过程及产物形貌和物相进行了分析.研究结果表明,机械合金化Y2O3和Al2O3粉体,可明显细化氧化物颗粒,球磨20h后,Y2O3和Al2O3晶粒大小约为34nm和32nm.球磨处理的Y2O3和Al2O3粉体具有很高的活性,促进放电等离子烧结低温反应合成和获得致密的YAG.对球磨20h的粉体在不同温度进行放电等离子烧结,在1200℃即可获得纯YAG陶瓷,在1500℃烧结,可得到相对密度为99.5%的YAG陶瓷.1500℃烧结的块体在可见光范围内透过率为13.8%.  相似文献   

6.
放电等离子烧结(SPS)YAG陶瓷的初步研究   总被引:2,自引:0,他引:2  
研究了采用放电等离子烧结(Spark Plasma Sintering SPS),利用高纯的氧化钇和氧化铝,在1500~1700℃,真空度优于10Pa,反应快速合成YAG陶瓷,但试样的致密度不高,而低气孔率是制备透明陶瓷的关键,实验表明,TEOS的掺加和粉料粒度的减小对烧结试样致密度的提高有一定的作用.  相似文献   

7.
放电等离子超快速烧结 SiC-Al2O3纳米复相陶瓷   总被引:1,自引:0,他引:1  
本文介绍用非均相沉淀法制备的纳米SiC-Al2O3复合粉体经放电等离子超快速烧结得到晶内型的纳米复相陶瓷,超快速烧结的升温速率为600℃/min,在烧结温度不保温,迅即在3min内冷却至600℃以下.与热压烧结相比,可降低烧结温度200℃以上.力学性能研究结果表明,在1450℃超快速烧结得到的纳米复相陶瓷的抗弯强度高达1000MPa,维氏硬度为 19GPa,断裂韧性也比Al2O3有所提高.TEM像显示纳米SiC颗粒大多分布在Al2O3母体晶粒内,而断裂表面的SEM像表明,穿晶断裂是其主要的断裂模式,这是所制备的纳米复相陶瓷力学性能大幅提高的主要原因.  相似文献   

8.
放电等离子烧结技术与新材料研究   总被引:2,自引:0,他引:2  
详细介绍了放电等离子烧结(spark plasma sintering,SPS)技术的工艺特点、特殊的烧结机理以及设备发展概况。重点阐述了SPS新材料研究开发的国内外发展状况,包括剃度材料、综合性能优异的稀土永磁Nd-Fe-Co材料、热电能源转换材料(CoSb3系列)、纳米WC-Co硬质材料等。最后展望了SPS新材料在中国的发展前景及应该采取的对策。  相似文献   

9.
研究分别采用了放电等离子烧结方法(Spark Plasma Sintering,SPS)和普通烧结方法,对(Ba,Sr)TiO3陶瓷进行不同温度下的烧结(1200~1300℃),进而研究了放电等离子烧结对(Ba,Sr)TiO3陶瓷性质的改良能力.实验表明,同温度下SPS法烧结的(Ba,Sr)TiO3陶瓷具有更大的相对介电常数,更低的电流损耗.同时,从SEM照片中观测到SPS烧结法可以较好的改进陶瓷的表面致密度.另外,1240℃下用SPS方法烧结的(Ba,Sr)TiO3陶瓷有着最优良的性质.  相似文献   

10.
为开发新型金属材料,采用机械合金化与放电等离子烧结的方法制备Fe-Fe3Al合金.根据Fe-Al二元相图与研究经验,对成分及工艺进行优化设计.用X射线衍射仪(XRD)对成分进行了定性分析,用扫描电子显微镜(SEM)观察了样品的表面与断口形貌,进行了能谱分析,并测试了致密度、显微硬度(HV)及抗弯强度、抗拉强度等力学性能.结果表明:对粉末进行预球磨,并在球磨前后对粉末进行搅拌混合处理,能更好地促使Fe与Al在高能球磨的过程中反应;经放电等离子烧结能够制备出Fe3Al/Fe两相材料,相对密度为99%以上,硬度为HV561,抗弯强度1426 MPa,抗拉强度640 MPa,力学性能优于文献报道的值.  相似文献   

11.
放电等离子烧结技术   总被引:73,自引:4,他引:69  
本文介绍了近几年来在日本迅速发展的放电等离子烧结技术,除概要地介绍了这种烧结新技术的原理和特点外,着重介绍了放电等离子烧结技术在制备梯度功能材料和快速烧结细晶粒陶瓷方面的重要应用,其中后者包括了作者最近在日本大阪府立产业技术研究所取得的部分研究结果.  相似文献   

12.
钙硅基生物陶瓷具有良好的生物活性和细胞相容性, 在生物医疗领域具有广阔的发展前景。但是其粉体烧结性能差的缺点导致很难获得致密的陶瓷材料, 阻碍了其应用的进程。本研究采用化学共沉淀法制备了纯度高且烧结活性好的镁黄长石粉体, 然后采用放电等离子烧结技术(SPS)制备了镁黄长石陶瓷材料。通过X射线衍射(XRD)和扫描电子显微镜(SEM)表征了样品的组成结构和显微形貌, 并通过阿基米德法和模拟体液浸泡法分析了镁黄长石陶瓷样品的致密度和生物活性。研究结果表明, 采用SPS技术在1170℃、70 MPa保温5 min条件下可获得致密度超过99%的镁黄长石陶瓷材料。在模拟体液中浸泡3 d, 陶瓷样品表面出现磷酸盐的沉积, 浸泡7 d后生成了类骨羟基磷灰石, 说明SPS技术制备的致密镁黄长石生物陶瓷具有良好的诱导沉积类骨磷灰石能力。  相似文献   

13.
周鹏飞  刘彧  余永新  肖代红 《材料导报》2016,30(22):95-98, 103
采用放电等离子烧结方法(SPS)制备了AlCoCrFeNi高熵合金。通过差热分析、密度测试、X射线衍射、扫描电镜及力学性能测试,研究了SPS烧结温度对AlCoCrFeNi高熵合金的致密化行为、组织演变及力学性能影响。结果表明,随着SPS烧结温度的升高,材料的致密度与抗压缩强度明显提高。1200℃烧结后,AlCoCrFeNi高熵合金的致密度达到99.6%,抗压缩强度达到2195MPa,屈服强度达到1506MPa。在SPS烧结过程中,高熵合金从双相结构(BCC+B2)转变为三相结构(BCC+B2+FCC)。  相似文献   

14.
15.
以预合金化的粉末尺寸D50为3.3μm的NbSS固溶体相细粉末,粉末尺寸D50分别为22.1μm和23.5μm的Nb5Si3和Cr2Nb化合物粉末为原料,采用放电等离子烧结技术制备NbSS/Nb5Si3两相合金和NbSS/Nb5Si3/Cr2Nb三相合金,研究显微组织形貌、室温和高温力学性能及高温氧化性能。结果表明:两相合金的显微组织由NbSS基体和呈均匀岛状分布的Nb5Si3组成,三相合金中NbSS有相互连接成基体的趋势,而Nb5Si3和Cr2Nb相也以块状散布在NbSS中。NbSS/Nb5Si3两相合金和NbSS/Nb5Si3/Cr2Nb三相合金的室温断裂韧性值KQ分别达到15.1MPa·m1/2和11.3MPa·m1/2,室温下合金中NbSS相以韧窝型断裂为主,对Nb-Si基合金的室温断裂韧性有利,而Nb5Si3和Cr2Nb相为脆性断裂。1250℃时NbSS/Nb5Si3/Cr2Nb合金的压缩强度高于NbSS/Nb5Si3合金,但当温度上升到1350℃时两者强度出现反转。Cr2Nb相对合金高温抗氧化性能有利,1250℃下静态氧化100h时NbSS/Nb5Si3合金的氧化增重为233mg/cm2,大于NbSS/Nb5Si3/Cr2Nb合金的175mg/cm2。  相似文献   

16.
放电等离子烧结(SPS)技术   总被引:13,自引:4,他引:13  
放电等离子烧结(SPS)技术是一种新型的材料制备技术。介绍了SPS技术的发展概况、原理、特点及在材料制备领域的应用。最后,对SPS主发展前景进行了展望。  相似文献   

17.
非晶合金又称“金属玻璃”,是由于超快速冷却凝固导致无法有序排列结晶,从而得到的一种长程无序结构。这种非晶合金与存在晶界和位错的普通合金相比,具有更加优异的力学及物化性能。由于粉末状或条状非晶合金在尺寸和性能等方面的限制,因而大尺寸、优异力学性能及软磁性能卓越的块体非晶合金的制备受到了大量关注与探究。放电等离子烧结技术以温度低、效率高、时间短及冷却速率快等优点,被认为是一种具有广阔发展前景的制备方法。对Fe基、Zr基、Al基及Ti基本身的特点,以及通过放电等离子烧结技术制备不同体系块体非晶合金的物理及化学性能的研究进行了较为全面的综述。概述了放电等离子烧结技术的原理及在制备块体非晶合金方面的优势;分析了放电等离子烧结技术和制备的块体非晶合金材料存在的问题,以及采用该技术制备块体非晶合金的发展前景。重点介绍了在采用该制备不同体系的块体非晶合金时,如何通过改变放电等离子烧结参数,或通过再加工、本身粉末添加元素等方法获得大尺寸、优异性能的块体非晶合金。  相似文献   

18.
19.
采用放电等离子烧结方法(SPS),制备体积分数5%TiB_2的等摩尔AlCoCrFeNi高熵合金基复合材料。通过密度测试、X射线衍射、扫描电镜及力学性能测试等方法,研究SPS烧结温度及烧结压力对复合材料的微结构演变与力学性能影响。结果表明:随着SPS烧结温度及烧结压力的增加,复合材料的硬度及抗压强度得到明显提高。在1200℃/30MPa进行SPS烧结后,复合材料的致密度达99.6%,抗压强度达2416MPa,屈服强度达1474MPa,硬度超过470HB。烧结过程中,复合材料的基体高熵合金发生相变,1200℃及30~45MPa烧结时,复合材料由BCC,B_2,FCC,σ及TiB_2相组成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号