首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inheriting all the advantages of Orthogonal Frequency Division Multiplexing (OFDM), plus the ability to offer a fine level of bit granularity and dynamic subcarrier allocation for multiuser diversity, the Orthogonal Frequency Division Multiple Access (OFDMA) has emerged as a potential candidate for multiple access technique for future broadband wireless networks. However, the benefits of OFDMA come with stringent requirements on synchronization, especially in the uplink. Unless the timing offsets (TOs) and carrier frequency offsets (CFOs) among users in the uplink are kept under tolerable ranges, inter-symbol interference (ISI), inter-channel interference (ICI) and multi-user interference (MUI) will occur, which degrade the overall system performance severely. Accurate estimation of TOs and CFOs is required for each user, so that they can be accounted for at the user’s side or compesated for at the base station. This paper proposes a novel method to estimate jointly TOs and CFOs in the time-domain for multi-user in the OFDMA uplink. The method is shown to offer good accuracy, while maintaining a reasonable complexity compared to conventional estimation schemes.  相似文献   

2.
In orthogonal frequency-division multiple access (OFDMA), closely spaced multiple subcarriers are assigned to different users for parallel signal transmission. An interleaved subcarrier-assignment scheme is preferred because it provides maximum frequency diversity and increases the capacity in frequency-selective fading channels. The subcarriers are overlapping, but orthogonal to each other such that there is no intercarrier interference (ICI). Carrier-frequency offsets (CFOs) between the transmitter and the receiver destroy the orthogonality and introduces ICI, resulting in multiple-access interference. This paper exploits the inner structure of the signals for CFO estimation in the uplink of interleaved OFDMA systems. A new uplink signal model is presented, and an estimation algorithm based on the signal structure is proposed for estimating the CFOs of all users using only one OFDMA block. Diversity schemes are also presented to improve the estimation performance. Simulation results illustrate the high accuracy and efficiency of the proposed algorithm.  相似文献   

3.
In orthogonal frequency-division multiplexing, the total spectral resource is partitioned into multiple orthogonal subcarriers. These subcarriers are assigned to different users for simultaneous transmission in orthogonal frequency-division multiple access (OFDMA). In an unsynchronized OFDMA uplink, each user has a different carrier frequency offset (CFO) relative to the common uplink receiver, which results in the loss of orthogonality among subcarriers and thereby multiple access interference. Hence, OFDMA is very sensitive to frequency synchronization errors. In this paper, we construct the received signals in frequency domain that would have been received if all users were frequency synchronized. A generalized OFDMA framework for arbitrary subcarrier assignments is proposed. The interference in the generalized OFDMA uplink due to frequency synchronization errors is characterized in a multiuser signal model. Least squares and minimum mean square error criteria are proposed to construct the orthogonal spectral signals from one OFDMA block contaminated with interference that was caused by the CFOs of multiple users. For OFDMA with a large number of subcarriers, a low-complexity implementation of the proposed algorithms is developed based on a banded matrix approximation. Numerical results illustrate that the proposed algorithms improve the system performance significantly and are computationally affordable using the banded system implementation  相似文献   

4.
在OFDMA(正交频分多址)系统的上行链路,单个用户的定时偏移也会导致多用户干扰(MUI).实际的OFDMA标准利用接收机与发射机之间复杂的闭环修正来实现高精度定时,从而将多用户干扰控制在可接受的范围内.文中考虑并分析了OFDMA系统存在定时偏移的各种可能情况,以及每种情况下的信号与干扰的功率比(信干比).Matlab仿真证实了理论分析结果的正确性.  相似文献   

5.
This paper investigates Carrier Frequency Offset (CFO), estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmitters and the uplink receiver will destroy orthogonality among different subcarriers, hence resulting in inter-carrier interference and multiuser interference. A two-stage frequency offset estimation algorithm based on subspace processing is proposed. The main advantage of the proposed method is that it can obtain the CFOs of all users simultaneously using only one OFDMA block. Compared with the previously known methods, it not only has a relatively low implementation complexity but is also suitable for random subchannel assignment.  相似文献   

6.
Recently, orthogonal frequency-division multiplexing (OFDM), with clusters of subcarriers allocated to different subscribers (often referred to as OFDMA), has gained much attention for its ability in enabling multiple-access wireless multimedia communications. In such systems, carrier frequency offsets (CFOs) can destroy the orthogonality among subcarriers. As a result, multiuser interference (MUI) along with significant performance degradation can be induced. In this paper, we present a scheme to compensate for the CFOs at the base station of an OFDMA system. In the proposed scheme, circular convolutions are employed to generate the interference after the discrete Fourier transform processing, which is then removed from the original received signal to increase the signal-to-interference power ratio (SIR). Both SIR analysis and simulation results will show that the proposed scheme can significantly improve system performance.  相似文献   

7.
In this paper, we propose a novel hybrid joint maximum‐likelihood estimator for carrier frequency offset (CFO), timing offset, and channel response of all users in the uplink of an orthogonal frequency division multiple access (OFDMA) system. The proposed estimation method significantly reduces complexity of this multiparameter, multidimensional optimization problem, using the concept of separation of the different user signals by means of newly defined projection operators. This projection technique is combined with the alternating projection method available in the literature to arrive at a new hybrid algorithm that offers significant performance advantages in terms of computational complexity and estimator performance. The joint estimation of the CFOs, timing offsets, and channel coefficients for all active users together at the base station of the OFDMA uplink is a rarely addressed task. The proposed method also offers the flexibility of application to any subcarrier assignment scheme used in OFDMA systems. Extensive simulation studies corroborate the advantages of the new hybrid method for all three estimation requirements in the multiuser OFDMA uplink. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
文中对OFDMA系统中的子载波分配方法进行了研究,介绍了两种子载波分配方法的原理,对两种子载波分配方法进行了仿真,结果显示在频率选择性衰落信道中交织分配的OFDMA系统要比块分配的OFDMA系统获得更多的频率分集.给出了交织OFDMA系统上行链路的信号结构,由于发射机和接收机之间存在的载波频率偏移(CFO)将会影响子载波间的正交性,对多用户的CFO估计提出了一种估计算法,仿真的结果显示所提出的算法具有较好的性能.  相似文献   

9.
This paper examines the carrier frequency offset (CFO) estimation problem in the tile‐based orthogonal frequency division multiple access (OFDMA) uplink systems, which is very challenging due to the presence of multiple CFOs. The existing solutions to this problem are either too complex to implement or not flexible in subcarrier allocation. To solve these problems, this paper proposes a tile‐structure based iterative multi‐CFO estimation technique. The proposed method is developed based on a special training sequence with repetitive structure. The inherent multi‐user interference (MUI) compression provided by the tile structure allows us to utilize the repetitive property of the training sequence to jointly estimate the CFOs in the frequency domain with low complexity. Combining the CFO estimation with an interference cancellation scheme and performing iteratively, the algorithm achieves high estimation accuracy and fast convergence. The proposed algorithm is suitable for any subcarrier assignment schemes. In addition, as compared with other existing time domain based algorithms, which achieve the Cramer Rao Bound (CRB) at the price of unaffordable complexity, it closely approaches their performance with over 70% computational saving, which is significantly important for practical implementation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
在OFDMA系统中,采用交织子载波分配方法可以提高频率分集和系统容量,但是发射机和接收机之间的载波频率偏移会破坏子载波间的正交性,从而导致本用户的载波间干扰以及用户间干扰。该文分析了交织OFDMA上行链路的信号结构,提出了一种采用自适应波束形成器的载波频偏补偿方法,并给出了两种自适应波束形成器:匹配滤波器和MMSE方法。仿真结果验证了MMSE自适应波束形成器的误比特率性能优于匹配滤波器以及传统的循环卷积方法。  相似文献   

11.
Similar to the conventional orthogonal frequencydivision multiplexing (OFDM) system, an OFDM multiple access (OFDMA) system will have a carrier frequency offset (CFO) problem. Since CFOs of all users are different, CFO compensation in the OFDMA uplink system is much more involved. A simple, yet efficient, method is the zero-forcing (ZF) compensation method. However, it involves an inverse of an N × N CFO-induced ICI matrix, where N is the number of subcarriers. Thus, the complexity can become very high when N is large, a case commonly seen in OFDMA systems. In this work, we propose a low-complexity ZF method to overcome the problem. The main idea is to use Newton's method to solve matrix inversion iteratively. We explore the structure of the CFOinduced ICI matrix and develop a method that can implement Newton's method with fast Fourier transforms (FFTs). As a result, the required computational complexity is significantly reduced from O(N3) to O(2N log2N). Simulations show that, with only three iterations, the proposed method can have similar performance to the direct ZF method.  相似文献   

12.
范达  曹志刚 《电子学报》2007,35(4):629-633
在OFDMA系统中,通过为每个用户分配不同的子载波可以实现并行数据传输.采用Interleaved子载波分配方法可以提高频率分集和系统容量,但是发射机和接收机之间的载波频率偏移会破坏子载波间的正交性,从而导致本用户的载波间干扰(ICI)以及用户间干扰(MUI).本文提出了一种基于子空间的两阶段频偏搜索方法,该方法只采用一个OFDMA符号块就可以实现Interleaved-OFDMA上行链路多个用户频偏的联合估计,并且不需要知道接入的用户个数及用户所占用的子信道,因此适用于随机分配子信道的情况.仿真结果验证了算法的精确度和有效性.  相似文献   

13.
In this paper, a single-input single-output-/multipleinput multiple-output- (SISO-/MIMO-) OFDMA uplink baseband transceiver based on IEEE 802.16e-2005 is proposed. To compensate for the interference of carrier frequency offset (CFO), an inter-carrier interference-based (ICI-cancellationbased) CFO estimator in conjunction with channel estimation and MIMO detector is proposed. Moreover, a low complexity solution for implementation is also provided. Simulation results show that the mean-square-error (MSE) performance of the proposed CFO estimator can be reduced to about one tenth compared to other methods and the bit-error-rate (BER) performance of the proposed transceiver is quite close to that of an ideal system that doesn?t include CFO compensation.  相似文献   

14.
In this paper we investigate the detection algorithms for interleave division multiple access (IDMA) systems in the presence of carrier frequency offsets (CFOs). The existing IDMA detection algorithm is designed under the zero CFO assumption and its performance will be degraded when the CFOs are present. We first extend the existing algorithm to the nonzero CFO case by utilizing effective channel coefficients which take the CFO effects into account. Then we turn to a more practical scenario with imperfect CFO estimates. We propose an algorithm that can cope with the residual CFO effects by integrating the CFO updating into the iterative receiver. Signal-to-interference-plus-noise ratio analysis and simulations show the feasibility and superiority of our proposed algorithms.  相似文献   

15.
In the uplink of Orthogonal Frequency-Division Multiple Access (OFDMA) systems, the user carrier frequency offsets result in inter-carrier-interference (ICI) and multipleuser-interference (MUI), leading to a degradation of the bit error rate (BER). This paper treats this uplink scenario and derives the average uplink capacity and the BER using the signal-to-interference-and-noise ratio (SINR) analysis. Adaptive power allocation is suggested to increase the capacity. When the frequency offsets are modeled as zero-mean Gaussian or Uniform random variables, the BER is derived as a closed-form infiniteseries. The series requires at least 50 terms to ensure sufficient accuracy.  相似文献   

16.
In this paper, the issue of multiple-access interference (MAI) suppression for the uplink in an interleaved orthogonal frequency-division multiple-access (OFDMA) system is investigated. In such a system, a carrier frequency offset (CFO) disrupts the orthogonality between the subcarriers and gives rise to MAI among users. Based on the signature vector formulated for each user, we propose a novel detector that performs MAI suppression before CFO compensation and fast Fourier transform (FFT) demodulation. Subspace zero-forcing and minimum mean square error (MMSE) techniques are then developed to suppress MAI. The proposed scheme is shown to become almost MAI free, provided that the CFO estimation is accurate enough. From the obtained simulation results, the proposed scheme is also found to be able to enhance the system performance at low complexity.  相似文献   

17.
OFDMA上行链路系统的频偏估计算法   总被引:1,自引:0,他引:1  
介绍了正交频分复用多址接入(OFDMA)的优缺点,以及目前应用到的领域。对OFDMA上行链路载波频偏(CFO)估计研究的发展背景和方法分类进行了简要汇总,并对当前估计方法进行了总结分类;给出了带频偏OFDMA上行链路的系统框图和信号模型;且对现有的几种典型频偏估计算法进行了分析和讨论。总结和展望了OFDMA上行链路频偏估计方法的研究方向和关键问题。  相似文献   

18.
In an uplink transmission of a coded orthogonal frequency division multiple access (C-OFDMA) system, channel estimation, time and frequency synchronization has to be addressed. For this purpose a control data, i.e. a known training sequence called “preamble” and pilot sub-carriers are used. As an alternative to the classic scheme and in order to maximize the data rate, we propose a non-pilot aided estimator based on an iterative architecture that does not require pilot sub-carriers. Our approach combines 1/ the so-called minimum mean square error successive detector to estimate the signal sent by each user 2/ a recursive method estimating the CFOs. Various algorithms such as the extended Kalman filter, the sigma-point Kalman filters and the extended H filter are tested and their performances are compared in terms of convergence speed and estimation accuracy. When considering an interleaved OFDMA uplink system over a Rayleigh fading channel, simulation results clearly show the efficiency of the proposed algorithm in terms of CFO estimation and bit error rate performances.  相似文献   

19.
A semiblind method is proposed for simultaneously estimating the carrier frequency offsets (CFOs) and channels of an uplink multiuser multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system. By incorporating the CFOs into the transmitted symbols and channels, the MIMO-OFDM with CFO is remodeled into an MIMO-OFDM without CFO. The known blind method for channel estimation (Zeng and Ng in 2004) (Y. H. Zeng and T. S. Ng, ldquoA semi-blind channel estimation method for multi-user multi-antenna OFDM systems,rdquo IEEE Trans. Signal Process., vol. 52, no. 5, pp. 1419-1429, May 2004.) is then directly used for the remodeled system to obtain the shaped channels with an ambiguity matrix. A pilot OFDM block for each user is then exploited to resolve the CFOs and the ambiguity matrix. Two dedicated pilot designs, periodical and consecutive pilots, are discussed. Based on each pilot design and the estimated shaped channels, two methods are proposed to estimate the CFOs. As a result, based on the second-order statistics (SOS) of the received signal and one pilot OFDM block, the CFOs and channels are found simultaneously. Finally, a fast equalization method is given to recover the signals corrupted by the CFOs.  相似文献   

20.
WiMAX OFDMA初始测距中的多用户频偏估计   总被引:1,自引:0,他引:1  
测距过程是移动WiMAX标准中的重要过程,用于解决远近效应及同步问题。该文针对WiMAX OFDMA上行链路的初始测距,提出了两种适用于多用户的载波频偏估计方法。方法1采用参考测距信号与接收信号的时域相关提取期望测距信号,并利用相关结果的相位估计测距用户的频偏;方法2采用参考测距信号与接收到的两个相邻OFDM符号的频域相关提取期望测距信号,并利用两次结果的相位差估计测距用户的频偏。仿真实验证明基于频域相关的方法更适合于在一个测距时隙内存在多个测距用户的情况,并且不易受定时偏差估计误差的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号