首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(methyl methacralyate) (PMMA) has long been used in dentistry as a base polymer for dentures, and it is recently being used for the 3D printing of dental materials. Despite its many advantages, its susceptibility to microbial colonization remains to be overcome. In this study, the interface between 3D-printed PMMA specimens and oral salivary biofilm was studied following the addition of zwitterionic materials, 2-methacryloyloxyethyl phosphorylcholine (MPC) or sulfobetaine methacrylate (SB). A significant reduction in bacterial and biofilm adhesions was observed following the addition of MPC or SB, owing to their protein-repellent properties, and there were no significant differences between the two test materials. Although the mechanical properties of the tested materials were degraded, the statistical value of the reduction was minimal and all the properties fulfilled the requirements set by the International Standard, ISO 20795-2. Additionally, both the test materials maintained their resistance to biofilm when subjected to hydrothermal fatigue, with no further deterioration of the mechanical properties. Thus, novel 3D-printable PMMA incorporated with MPC or SB shows durable oral salivary biofilm resistance with maintenance of the physical and mechanical properties.  相似文献   

2.
Developing wound dressings that have strong adhesion strength without causing any conglutination to the wound site is still challenging. Herein, is proposed that zwitterionic shape memory polymers can be applied as promising candidates for wound dressing. Sulfobetaine methacrylate (SBMA) is copolymerized with 2,3‐dihydroxypropyl methacrylate (DHMA) in the presence of boric acid as a cross‐linking agent. The prepared material exhibits multi‐stimuli responsive shape memory behaviors: it can rapidly return to its initial shape upon heating to 90 °C, and a gradual recovery is also observed by absorbing moisture in humid environments. The shape memory effect can be well adjusted via incorporation of sodium chloride to induce the dissociation of electrostatic interactions between PSBMA chains, leading to reduced transition temperature and faster shape recovery rate. Moreover, the dynamic nature of boron ester bonds and electrostatic interaction endows the material with effective and rapid self‐healing ability. It is also demonstrated that the deployment process of the dressing that a sample with an initially circular shape can perfectly fit and tightly bind to the wound site after moisture‐induced shape recovery. The proposed zwitterionic polymer can possibly extend the application scope of shape memory polymers and pave a new way for the design of wound dressings.  相似文献   

3.
《分离科学与技术》2012,47(5):647-653
Different solid/liquid separation techniques for particle separation after a moving bed biofilm reactor are discussed. Conventional technologies such as sedimentation, floatation, and depth filtration are reviewed based on reports and articles in the literature. Optimal operating parameters that lead to satisfactory solids removal rates were given for each technology. Disc and membrane filtration are also discussed as relatively new technologies that offer advanced solids separation process. The potential of membrane separation, especially submerged membrane reactors (sMBR), were found and they are therefore proposed as a good alternative to conventional solid/liquid separation technologies. The nature and characteristics of the biofilm process also opens for a variety of possible configurations of submerged MBR that could be employed for advanced treatment of effluent from a moving bed biofilm process.  相似文献   

4.
Summary: Five new crosslinkers for use in dental composites were synthesized. Four are based on TBHMA: 1 via reaction of TBBr and Bisphenol A; 2 by hydrolysis of t‐butyl groups of the first monomer to give a diacid derivative; 3 by conversion of the first monomer to an amide derivative using benzyl amine; 4 by conversion of the first monomer to amide derivative using APTES. The AHM‐based monomer 5 was synthesized from the Michael addition of APTES to AHM. The photopolymerization behaviors of the synthesized monomers with Bis‐GMA, TEGDMA and HEMA were investigated using photodifferential scanning calorimetry at 40 °C using DMPA as photoinitiator. The polymerization rates and degrees of conversion for mixtures of any of the monomers 1 – 4 with Bis‐GMA:TEGDMA were found to be similar to Bis‐GMA:TEGDMA, higher than Bis‐GMA:HEMA, and also higher than mixtures with Bis‐GMA:HEMA. The incorporation of TBHMA‐based monomers into the conventional resin mixture (Bis‐GMA and TEGDMA) reduced the polymerization shrinkages. Monomer 5 and its mixtures polymerized much faster and to higher degrees of conversion than the other investigated systems, however, this system exhibited the largest volume shrinkage.

Structures of some of the new crosslinkers synthesized.  相似文献   


5.
The presence of saliva in the oral environment is relevant for several essential health processes. However, the noncontrolled early saliva interaction with biomaterials manufactured for oral rehabilitation may generate alterations in the superficial properties causing negative biological outcomes. Therefore, the present review aimed to provide a compilation of all possible physical–chemical–biological changes caused by the early saliva interaction in dental implants and materials for oral regeneration. Dental implants, bone substitutes and membranes in dentistry possess different properties focused on improving the healing process when in contact with oral tissues. The early saliva interaction was shown to impair some positive features present in biomaterials related to quick cellular adhesion and proliferation, such as surface hydrophilicity, cellular viability and antibacterial properties. Moreover, biomaterials that interacted with contaminated saliva containing specific bacteria demonstrated favorable conditions for increased bacterial metabolism. Additionally, the quantity of investigations associating biomaterials with early saliva interaction is still scarce in the current literature and requires clarification to prevent clinical failures. Therefore, clinically, controlling saliva exposure to sites involving the application of biomaterials must be prioritized in order to reduce impairment in important biomaterial properties developed for rapid healing.  相似文献   

6.
Methicillin-resistant Staphylococcus aureus (MRSA) infection is challenging to eradicate because of antibiotic resistance and biofilm formation. Novel antimicrobial agents and alternative therapies are urgently needed. This study aimed to evaluate the synergy of sanguisorbigenin (SGB) isolated from Sanguisorba officinalis L. with six conventional antibiotics to achieve broad-spectrum antibacterial action and prevent the development of resistance. A checkerboard dilution test and time-to-kill curve assay were used to determine the synergistic effect of SGB combined with antibiotics against MRSA. SGB showed significant synergy with antibiotics and reduced the minimum inhibitory concentration of antibiotics by 2–16-fold. Biofilm inhibition assay, quantitative RT-PCR, crystal violet absorption, and transmission electron microscopy were performed to evaluate the synergy mechanism. The results indicated that SGB could inhibit biofilm formation and alter cell membrane permeability in MRSA. In addition, SGB was found to exhibit quite low cytotoxicity and hemolysis. The discovery of the superiority of SGB suggests that SGB may be an antibiotic adjuvant for use in combination therapy and as a plant-derived antibacterial agent targeting biofilms.  相似文献   

7.
The internal morphologies for a series of heterogeneous PHEMA and P[HEMA‐co‐MeO‐PEGMA] [PHEMA = poly(2‐hydroxyethyl methacrylate), MeO‐PEGMA = poly(ethylene glycol) methyl ether methacrylate] hydrogels were characterized by scanning electron microscopy (SEM) in conjunction with a sample drying procedure, and by laser scanning confocal microscopy (LSCM) without prior drying. Compared to SEM, LSCM was far simpler and more rapid technique for imaging hydrogels. LSCM also allowed the native hydrated morphology of the hydrogels to be characterized, whereas SEM could only characterize the morphology of samples in their dehydrated state. No dehydration method used in this study preserved the true native morphology, but plunge freezing/freeze drying was the most suitable method that best preserved the native morphology for all hydrogel compositions. Refrigerated freezing/freeze‐drying and critical point drying introduced significant morphological artifacts, the severity of the artifacts being dependant on the sample's composition and Tg. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
A facile, safe, and environmentally friendly approach to the preparation of poly(β‐cyclodextrin‐co‐guanidinocitrate) (ZWβCDP) via polymerization of β‐cyclodextrin (β‐CD) in the presence of guanidinocitrate as a novel cross‐linker is reported. Novel zwitterionic guanidinocitrate cross‐linker is synthesized by in situ reaction of melted guanidine and citric acid during polymerization. The structure of achieved hydrogels is characterized by attenuated total reflection‐Fourier‐transform infrared (ATR‐FTIR), X‐ray photoelectron spectroscopy, thermogravimetric analysis, differential thermogravimetric, differential scanning calorimetry (DSC), differential of DSC, and X‐ray diffraction analyses and also by Kjeldahl and colorimetric methods for elemental analyses. The swelling ratio of the anionic β‐CD polymer (ANβCDP) and ZWβCDPs is determined in water and simulated physiological media. Subsequently, the hydrogels/ciprofloxacin (CFX, as a model antibiotic drug) complexes are prepared to improve the thermal stability of CFX and define potential pharmaceutical applications of hydrogels. Solid‐state characterization of hydrogels/CFX complexes is investigated by ATR‐FTIR and DSC. The in vitro release behavior of CFX from hydrogels is investigated at simulated physiological media, which exhibit initial burst and then slow drug release. The CFX release from ZWβCDP is slower than ANβCDP.

  相似文献   


9.
In the present study, three different block copolymers based on styrene, tert-butyl methacrylate, and glycidyl methacrylate (GMA) were synthesized via sequential atom transfer radical polymerization. The addition of the GMA block was found to be best performed at 60°C. The polymers were then hydrolyzed and neutralized, to afford amphiphilic block copolymers, and the rheological properties of their aqueous solutions were measured, in order to investigate solution properties relevant for enhanced oil recovery, as a function of the polymer structure. It was observed that these polymers behave as thickening agents with shear thinning behavior. As expected, the polymers were sensitive to the presence of salt, as lower viscosities were recorded in saline water. However, the viscosity is less affected by high salinity, when compared to previously studied analogous diblock systems. In the best case, the viscosity only decreased by a factor of 1.8 upon salt addition whereas it decreased by a factor of 10 in previously reported non-GMA containing polymers. Finally, thermo-responsive behavior was found for one of the synthesized polymers. In particular, a hydrolyzed triblock poly[styrene-b-tert-butyl methacrylate-b-glycidyl methacrylate], which synthesis is reported here for the first time, showed a thermothickening behavior, promising for the intended application in oil recovery.  相似文献   

10.
Magnesium (Mg)-based biomaterials hold considerable promise for applications in regenerative medicine. However, the degradation of Mg needs to be reduced to control toxicity caused by its rapid natural corrosion. In the process of developing new Mg alloys with various surface modifications, an efficient assessment of the relevant properties is essential. In the present study, a WE43 Mg alloy with a plasma electrolytic oxidation (PEO)-generated surface was investigated. Surface microstructure, hydrogen gas evolution in immersion tests and cytocompatibility were assessed. In addition, a novel in vitro immunological test using primary human lymphocytes was introduced. On PEO-treated WE43, a larger number of pores and microcracks, as well as increased roughness, were observed compared to untreated WE43. Hydrogen gas evolution after two weeks was reduced by 40.7% through PEO treatment, indicating a significantly reduced corrosion rate. In contrast to untreated WE43, PEO-treated WE43 exhibited excellent cytocompatibility. After incubation for three days, untreated WE43 killed over 90% of lymphocytes while more than 80% of the cells were still vital after incubation with the PEO-treated WE43. PEO-treated WE43 slightly stimulated the activation, proliferation and toxin (perforin and granzyme B) expression of CD8+ T cells. This study demonstrates that the combined assessment of corrosion, cytocompatibility and immunological effects on primary human lymphocytes provide a comprehensive and effective procedure for characterizing Mg variants with tailorable degradation and other features. PEO-treated WE43 is a promising candidate for further development as a degradable biomaterial.  相似文献   

11.
Palladium nanoparticles dispersed in ammonium salts of hyperbranched polystyrenes are adhesively immobilized on the surface of cotton or filter papers by simply heating with dicarboxylic acids or halide anions. The resulting Pd@cotton and Pd@filter paper behave as reusable catalysts; in particular, Pd@filter paper is useful as catalyst for application to sequential cross‐coupling and hydrogenation reactions to produce several different products with just one piece of the paper catalyst.

  相似文献   


12.
丙酯草醚是我国自主研制的一种新型高效油菜田除草剂。采用现代分子生物技术和微生物学传统方法从长期施用嘧啶水杨酸类除草剂的农田中富集、筛选出以丙酯草醚为唯一碳源生长的高效降解菌株M3-1,并对其最适降解条件及在土壤中的应用进行研究。结果表明:(1)经形态、生理生化和16S rDNA鉴定,M3-1属于拟无枝菌酸菌(Amycolatopsis sp.)。(2)最适温度为35℃,pH为6.0,接种量为8%,在底物(ZJ0273)浓度为100~400 mg.L.1均具有一定的降解效果,且降解率随底物浓度的增加而降低,浓度高于300 mg.L.1时,对M3-1的降解效果有较强的抑制作用。(3)最适降解条件下,水溶液中培养25 d对浓度为100 mg.L.1丙酯草醚的降解率可达63.3%。(4)M3-1在土壤中对ZJ0273有很好的去除效果,处理25 d,其降解率可达53.7%。  相似文献   

13.
Quercetin (QUE)—a plant-derived flavonoid, is recently established as an effective quorum sensing (QS) inhibiting agent in Pseudomonas aeruginosa—the main bacterial pathogen in bronchiectasis lungs. Successful clinical application of QUE, however, is hindered by its low solubility in physiological fluids. Herein we developed a solubility enhancement strategy of QUE in the form of a stable amorphous nanoparticle complex (nanoplex) of QUE and chitosan (CHI), which was prepared by electrostatically driven complexation between ionized QUE molecules and oppositely charged CHI. At its optimal preparation condition, the QUE–CHI nanoplex exhibited a size of roughly 150 nm with a 25% QUE payload and 60% complexation efficiency. The complexation with CHI had no adverse effect on the antibacterial and anticancer activities of QUE, signifying the preservation of QUE’s bioactivities in the nanoplex. Compared to the native QUE, the QUE–CHI nanoplex exhibited superior QS inhibition in suppressing the QS-regulated swimming motility and biofilm formation of P. aeruginosa, but not in suppressing the virulence factor production. The superior inhibitions of the biofilm formation and swimming motility afforded by the nanoplex were attributed to (1) its higher kinetic solubility (5-times higher) that led to higher QUE exposures, and (2) the synergistic QS inhibition attributed to its CHI fraction.  相似文献   

14.
15.
Metal-nanoparticle (M-NP)-modified glycidyl methacrylate (GMA)-based hydrogel film composites were synthesized and assessed for their catalytic activities by reducing para-nitrophenol (p-NP) to para-aminophenol (p-AP) with sodium borohydride. Poly(ethylene glycol)methyl ether-block-poly(glycidyl methacrylate)-block-poly(methyl methacrylate) (MPEG-b-PGMA-b-PMMA) triblock copolymer was synthesized via atom transfer-radical polymerization. The epoxy ring of the PGMA blocks was opened by the addition of 1-methylpiperazine. The resulting bifunctional polymer containing 2-hydroxy-3-methyl piperazinepropyl methacrylate units was used to synthesize novel crosslinked hydrogel films by quaternization of the tertiary amine (methylpiperazine) with 1,2-bis(2-iodoethoxy)ethane. The synthesized hydrogel film swelled in aqueous solution when the pH was changed from basic to acidic. The prepared MPEG-b-PHMPPMA-b-PMMA hydrogel film was used as an immobilizing matrix to form monometallic silver (Ag) and gold (Au) and bimetallic alloy gold:silver (Au:Ag) nanoparticles. The M-NP/hydrogel film composites were characterized by transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and ultraviolet–visible spectrophotometry. The synthesized M-NP/hydrogel film composites showed good catalytic activity to reduce p-NP to p-AP. The composites were also found to be reusable as their activity only slightly dropped after 10 consecutive uses. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48360.  相似文献   

16.
Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules.  相似文献   

17.
The use of surfactin, a powerful biosurfactant, is generally hampered by poor production yield. Consequently, identification of new producers and the study of operational parameters are essential. We identify Bacillus sp. H2O-1 as Bacillus velezensis, a species previously not investigated for its biosurfactant production. Among the nitrogen sources we tested, (NH4)2SO4 and NH4NO3 were the most appropriate for surfactin production, reaching 608.5 and 659.5 mg L−1, respectively. Only temperature affected the production, whereas rotation and the C/N ratio did not. Biosurfactants can be used in enhanced oil recovery (EOR) in reservoirs located in the presalt and postsalt layers, where conditions of temperature, pressure, and salinity are quite varied, requiring a study of the stability of these molecules under these conditions. We found the surfactin produced by B. velezensis to be stable at different temperatures, pH, and ionic strengths. We evaluated the concurrent effects of different salinity, temperature, and pressure conditions on surface and interfacial activities of this surfactin. Overall, we found the surfactin produced by B. velezensis H2O-1 to have considerable potential for industrial applications, mainly due to the stability of its physical and chemical characteristics when subjected to different temperatures, pressures, and salinities, in addition to its low toxicity.  相似文献   

18.
Ulcerative colitis (UC), which affects millions of people worldwide, is characterized by extensive colonic injury involving mucosal and submucosal layers of the colon. Nuclear factor E2-related factor 2 (Nrf2) plays a critical role in cellular protection against oxidant-induced stress. Antioxidant response element (ARE) is the binding site recognized by Nrf2 and leads to the expression of phase II detoxifying enzymes and antioxidant proteins. The Nrf2/ARE system is a key factor for preventing and resolving tissue injury and inflammation in disease conditions such as UC. Researchers have proposed that both Keap1-dependent and Keap1-independent cascades contribute positive effects on activation of the Nrf2/ARE pathway. In this review, we summarize the present knowledge on mechanisms controlling the activation process. We will further review nutritional compounds that can modulate activation of the Nrf2/ARE pathway and may be used as potential therapeutic application of UC. These comprehensive data will help us to better understand the Nrf2/ARE signaling pathway and promote its effective application in response to common diseases induced by oxidative stress and inflammation.  相似文献   

19.
Polymer brush coatings for combating marine biofouling   总被引:4,自引:0,他引:4  
A variety of functional polymer brushes and coatings have been developed for combating marine biofouling and biocorrosion with much less environmental impact than traditional biocides. This review summarizes recent developments in marine antifouling polymer brushes and coatings that are tethered to material surfaces and do not actively release biocides. Polymer brush coatings have been designed to inhibit molecular fouling, microfouling and macrofouling through incorporation or inclusion of multiple functionalities. Hydrophilic polymers, such as poly(ethylene glycol), hydrogels, zwitterionic polymers and polysaccharides, resist attachment of marine organisms effectively due to extensive hydration. Fouling release polymer coatings, based on fluoropolymers and poly(dimethylsiloxane) elastomers, minimize adhesion between marine organisms and material surfaces, leading to easy removal of biofoulants. Polycationic coatings are effective in reducing marine biofouling partly because of their good bactericidal properties. Recent advances in controlled radical polymerization and click chemistry have also allowed better molecular design and engineering of multifunctional brush coatings for improved antifouling efficacies.  相似文献   

20.
Mg-catalyzed [4+2] cycloaddition reactions between 2-aminobenzaldehydes and ynones offered an array of 2-arylquinoline motifs merged with a CF3-acyl group. Furthermore, with Mg-catalyzed [4+2] annulation as the key step, DDD107498, DDD102542, and Hit analogues were assembled. Finally, a computational study of the reaction mechanism was conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号