首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
It is primarily important to define the standard features and factors that affect dental pulp stem cells (DPSCs) for their broader use in tissue engineering. This study aimed to verify whether DPSCs isolated from various teeth extracted from the same donor exhibit intra-individual variability and what the consequences are for their differentiation potential. The heterogeneity determination was based on studying the proliferative capacity, viability, expression of phenotypic markers, and relative length of telomere chromosomes. The study included 14 teeth (6 molars and 8 premolars) from six different individuals ages 12 to 16. We did not observe any significant intra-individual variability in DPSC size, proliferation rate, viability, or relative telomere length change within lineages isolated from different teeth but the same donor. The minor non-significant variances in phenotype were probably mainly because DPSC cell lines comprised heterogeneous groups of undifferentiated cells independent of the donor. The other variances were seen in DPSC lineages isolated from the same donor, but the teeth were in different stages of root development. We also did not observe any changes in the ability of cells to differentiate into mature cell lines—chondrocytes, osteocytes, and adipocytes. This study is the first to analyze the heterogeneity of DPSC dependent on a donor.  相似文献   

4.
Exosomes have attracted attention due to their ability to promote intercellular communication leading to enhanced cell recruitment, lineage-specific differentiation, and tissue regeneration. The object of this study was to determine the effect of exosomes on cell homing and angiogenic differentiation for pulp regeneration. Exosomes (DPSC-Exos) were isolated from rabbit dental pulp stem cells cultured under a growth (Exo-G) or angiogenic differentiation (Exo-A) condition. The characterization of exosomes was confirmed by nanoparticle tracking analysis and an antibody array. DPSC-Exos significantly promoted cell proliferation and migration when treated with 5 × 108/mL exosomes. In gene expression analysis, DPSC-Exos enhanced the expression of angiogenic markers including vascular endothelial growth factor A (VEGFA), Fms-related tyrosine kinase 1 (FLT1), and platelet and endothelial cell adhesion molecule 1 (PECAM1). Moreover, we identified key exosomal microRNAs in Exo-A for cell homing and angiogenesis. In conclusion, the exosome-based cell homing and angiogenic differentiation strategy has significant therapeutic potential for pulp regeneration.  相似文献   

5.
Oxygen, as an external environmental factor, plays a role in the early differentiation of human stem cells, such as induced pluripotent stem cells (hiPSCs). However, the effect of oxygen concentration on the early-stage differentiation of hiPSC is not fully understood, especially in 3D aggregate cultures. In this study, we cultivated the 3D aggregation of hiPSCs on oxygen-permeable microwells under different oxygen concentrations ranging from 2.5 to 20% and found that the aggregates became larger, corresponding to the increase in oxygen level. In a low oxygen environment, the glycolytic pathway was more profound, and the differentiation markers of the three germ layers were upregulated, suggesting that the oxygen concentration can function as a regulator of differentiation during the early stage of development. In conclusion, culturing stem cells on oxygen-permeable microwells may serve as a platform to investigate the effect of oxygen concentration on diverse cell fate decisions during development.  相似文献   

6.
Self-maintaining hematopoietic stem cells are a cell population that is primarily ‘at risk’ to malignant transformation, and the cell-of-origin for some leukemias. Tissue-specific stem cells replenish the different types of functional cells within a particular tissue to meet the demands of an organism. For hematopoietic stem cells, this flexibility is important to satisfy the changing requirements for a certain type of immune cell, when needed. From studies of the natural history of childhood acute lymphoblastic leukemia, an initial oncogenic and prenatal insult gives rise to a preleukemic clone. At least a second genomic insult is needed that gives rise to a leukemia stem cell: this cell generates a hierarchy of leukemia cells. For some leukemias, there is evidence to support the concept that one of the genomic insults leads to dysregulation of the tissue homeostatic role of hematopoietic stem cells so that the hierarchy of differentiating leukemia cells belongs to just one cell lineage. Restricting the expression of particular oncogenes in transgenic mice to hematopoietic stem and progenitor cells led to different human-like lineage-restricted leukemias. Lineage restriction is seen for human leukemias by virtue of their sub-grouping with regard to a phenotypic relationship to just one cell lineage.  相似文献   

7.
8.
Dental pulp stem cells (DPSCs) are a type of easily accessible adult mesenchymal stem cell. Due to their ease of access, DPSCs show great promise in regenerative medicine. However, the tooth extractions from which DPSCs can be obtained are usually performed at a period of life when donors would have no therapeutic need of them. For this reason, it is imperative that successful stem cell storage techniques are employed so that these cells remain viable for future use. Any such techniques must result in high post-thaw stem cell recovery without compromising stemness, proliferation, or multipotency. Uncontrolled-rate freezing is not a technically or financially demanding technique compared to expensive and laborious controlled-rate freezing techniques. This study was aimed at observing the effect of uncontrolled-rate freezing on DPSCs stored for 6 and 12 months. Dimethyl sulfoxide at a concentration of 10% was used as a cryoprotective agent. Various features such as shape, proliferation capacity, phenotype, and multipotency were studied after DPSC thawing. The DPSCs did not compromise their stemness, viability, proliferation, or differentiating capabilities, even after one year of cryopreservation at −80 °C. After thawing, they retained their stemness markers and low-level expression of hematopoietic markers. We observed a size reduction in recovery DPSCs after one year of storage. This observation indicates that DPSCs can be successfully used in potential clinical applications, even after a year of uncontrolled cryopreservation.  相似文献   

9.
Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types for regenerative therapies given their ability to grow in the absence of serum and their realistic possibility to be used in autologous grafts. In this review, we describe the particular advantages of hDPSCs for neuroregenerative cell therapies. We thoroughly discuss the knowledge about their embryonic origin and characteristics of their postnatal niche, as well as the current status of cell culture protocols to maximize their multilineage differentiation potential, highlighting some common issues when assessing neuronal differentiation fates of hDPSCs. We also review the recent progress on neuroprotective and immunomodulatory capacity of hDPSCs and their secreted extracellular vesicles, as well as their combination with scaffold materials to improve their functional integration on the injured central nervous system (CNS) and peripheral nervous system (PNS). Finally, we offer some perspectives on the current and possible future applications of hDPSCs in neuroregenerative cell therapies.  相似文献   

10.
11.
12.
13.
14.
Bone defects affect patients functionally and psychologically and can decrease quality of life. To resolve these problems, a simple and efficient method of bone regeneration is required. Human dental pulp stem cells (DPSCs) have high proliferative ability and multilineage differentiation potential. In our previous study, we reported a highly efficient method to induce osteogenic differentiation using DPSC sheets treated with a helioxanthin derivative (4-(4-methoxyphenyl)pyrido[40,30:4,5]thieno[2,3-b]pyridine-2-carboxamide (TH)) in a mouse calvarial defect model. However, the localization of the DPSCs after transplantation remains unknown. Therefore, in this study, we investigated the localization of transplanted DPSCs in a mouse fracture model. DPSCs were collected from six healthy patients aged 18–29 years, cultured in normal medium (NM), osteogenic medium (OM), or OM with TH, and fabricated them into cell sheets. To evaluate the efficacy of fracture healing using DPSCs treated with OM+TH, and to clarify the localization of the transplanted DPSC sheets in vivo, we transplanted OM+TH-treated DPSC sheets labeled with PKH26 into mouse tibiae fractures. We demonstrated that transplanted OM+TH-treated DPSCs sheets were localized to the fracture site and facilitated bone formation. These results indicated that transplanted OM+TH-treated DPSCs were localized at fracture sites and directly promoted fracture healing.  相似文献   

15.
The neural crest shows an astonishing multipotency, generating multiple neural derivatives, but also pigment cells, skeletogenic and other cell types. The question of how this process is controlled has been the subject of an ongoing debate for more than 35 years. Based upon new observations of zebrafish pigment cell development, we have recently proposed a novel, dynamic model that we believe goes some way to resolving the controversy. Here, we will firstly summarize the traditional models and the conflicts between them, before outlining our novel model. We will also examine our recent dynamic modelling studies, looking at how these reveal behaviors compatible with the biology proposed. We will then outline some of the implications of our model, looking at how it might modify our views of the processes of fate specification, differentiation, and commitment.  相似文献   

16.
17.
Enamel matrix derivative (EMD) is widely used in periodontal tissue regeneration therapy. However, because the bioactivity of EMD varies from batch to batch, and the use of a synthetic peptide could avoid use from an animal source, a completely synthetic peptide (SP) containing the active component of EMD would be useful. In this study an oligopeptide synthesized derived from EMD was evaluated for whether it contributes to periodontal tissue regeneration. We investigated the effects of the SP on cell proliferation and osteoblast differentiation of human mesenchymal stem cells (MSCs), which are involved in tissue regeneration. MSCs were treated with SP (0 to 1000 ng/mL), to determine the optimal concentration. We examined the effects of SP on cell proliferation and osteoblastic differentiation indicators such as alkaline phosphatase activity, the production of procollagen type 1 C-peptide and osteocalcin, and on mineralization. Additionally, we investigated the role of extracellular signal-related kinases (ERK) in cell proliferation and osteoblastic differentiation induced by SP. Our results suggest that SP promotes these processes in human MSCs, and that ERK inhibitors suppress these effects. In conclusion, SP promotes cell proliferation and osteoblastic differentiation of human MSCs, probably through the ERK pathway.  相似文献   

18.
Mesenchymal stem cells (MSCs) are known for their beneficial effects and regenerative potential. In particular, dental-derived MSCs have the advantage of easier accessibility and a non-invasive isolation method. Moreover, thanks to their neural crest origin, dental MSCs seem to have a more prominent neuroregenerative potential. Indeed, in basal conditions they also express neuronal markers. However, it is now well known that the beneficial actions of MSCs depend, at least in part, on their secretome, referring to all the bioactive molecules released in the conditioned medium (CM) or in extracellular vesicles (EVs). In this review we focus on the applications of the secretome derived from dental MSCs for neuroregeneration and neuroprotection. The secretomes of different dental MSCs have been tested for their effects for neuroregenerative purposes, and the secretomes of dental pulp stem cells and stem cells from human exfoliated deciduous teeth are the most studied. Both the CM and EVs obtained from dental MSCs showed that they are able to promote neurite outgrowth and neuroprotective effects. Interestingly, dental-derived MSC secretome showed stronger neuroregenerative and neuroprotective effects compared to that obtained from other MSC sources. For these reasons, the secretome obtained from dental MSCs may represent a promising approach for neuroprotective treatments.  相似文献   

19.
20.
Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D) hyaluronan scaffold and human dental pulp stem cells (DPSCs) to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF) staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号