首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The introduction of computers as an aid in ship operations has lead to a continuous debate among users and designers relative to the multi-function capabilities of ship-board computers and the extent to which certain algorithms should be handled on board. New developments and commercial implementation of ship to shore communications partly eliminates one of the major obstacles in optimizing the use of shore based on shipboard computers to provide an idealized operational system for the officer on board and the shore-based management who are concerned with the entire fleet.An ongoing project initiated by the U.S. Maritime Administration is aimed at evaluating the practical aspects of such systems as an aid in ship handling in heavy weather. It is designed to provide additional insight on the subject and lead to a comprehensive commercial system.The paper describes the basic components and functions of the shipboard and the shore-based systems and sets forth the goals and expectations of the final configurations. Some initial results are shown and the approach used to incorporate such a system as an integral part of ship routing is demonstrated.A short discussion of several other ongoing projects aimed at verifying certain components of the total system is also given.  相似文献   

2.
Yanxing  Turgay  Wenhua  Jing 《Computer Networks》2006,50(18):3743-3762
Multi-constrained path (MCP) selection is one of the great challenges that QoS routing (QoSR) faces. To address it in an efficient and highly responsive manner, we propose a new QoSR algorithm, namely NM_MCP (normal measure-based multiple constrained path). Using the Dijkstra’s algorithm with respect to each link metric, NM_MCP pre-computes k primary paths in advance, where k is the number of link weights. When a routing request arrives, NM_MCP executes a modified version of the Dijkstra’s algorithm using a newly proposed, normal-measure-based nonlinear cost function. Extensive simulations show that NM_MCP achieves higher success rate in finding feasible paths with less computational cost than existing algorithms. To further improve the performance, we incorporate Pareto and nonlinear look-ahead mechanisms into the algorithm.  相似文献   

3.
滑动窗口是形状匹配中的常用检测方法,可以检测图像中不同尺度不同位置的多个物体。检测效果采用检测率和误检率来衡量。在传统的滑动窗口检测方法中,通常基于经验选取滑动步长和图像缩放规模这两个参数值,来获得较高的检验率和较低的误检率。然而这是典型的两目标优化问题,传统方法未考虑决策者对检验率与误检率的不同偏好。根据实际情况,考虑到决策者的正偏好(高检验率与低误检率)及负偏好(低检验率和高误检率),引入双极偏好控制策略,提出基于双极偏好的多目标粒子群算法(BPMOPSO)的滑动窗口参数优化方法。通过Leeds Cows图像数据集上图像的检测实验结果表明,与传统算法相比,该算法显著改善了滑动窗口检测中的检验率和误检率,且大大提高了运行效率。  相似文献   

4.
    
Nowadays, most Multi-Objective Evolutionary Algorithms (MOEA) concentrate mainly on searching for an approximation of the Pareto frontier to solve a multi-objective optimization problem. However, finding this set does not completely solve the problem. The decision-maker (DM) still has to choose the best compromise solution from that set. But as the number of criteria increases, several important difficulties arise in performing this task. Identifying the Region of Interest (ROI), according to the DM’s preferences, is a promising alternative that would facilitate the selection process. This paper approaches the incorporation of preferences into a MOEA in order to characterize the ROI by a multi-criteria classification method. This approach is called Hybrid Multi-Criteria Sorting Genetic Algorithm and is composed of two phases. First, a metaheuristic is used to generate a small set of solutions that are classified in ordered categories by the DM. Thus, the DM’s preferences will be reflected indirectly in this set. In the second phase, a multi-criteria sorting method is combined with an evolutionary algorithm. The first one is used to classify new solutions. Those classified as ‘satisfactory’ are used for creating a selective pressure towards the ROI. The effectiveness of our method was proved in nine instances of a public project portfolio problem. The obtained results indicate that our approach achieves a good characterization of the ROI, and outperforms the standard NSGA-II in simple and complex problems. Also, these results confirm that our approach is able to deal with many-objective problems.  相似文献   

5.
    
The vehicle routing problem (VRP) is an important aspect of transportation logistics with many variants. This paper studies the VRP with backhauls (VRPB) in which the set of customers is partitioned into two subsets: linehaul customers requiring a quantity of product to be delivered, and backhaul customers with a quantity to be picked up. The basic VRPB involves finding a collection of routes with minimum cost, such that all linehaul and backhaul customers are serviced. A common variant is the VRP with selective backhauls (VRPSB), where the collection from backhaul customers is optional. For most real world applications, the number of vehicles, the total travel cost, and the uncollected backhauls are all important objectives to be minimized, so the VRPB needs to be tackled as a multi-objective problem. In this paper, a similarity-based selection evolutionary algorithm approach is proposed for finding improved multi-objective solutions for VRPB, VRPSB, and two further generalizations of them, with fully multi-objective performance evaluation.  相似文献   

6.
The vehicle routing problem with time windows is a complex combinatorial problem with many real-world applications in transportation and distribution logistics. Its main objective is to find the lowest distance set of routes to deliver goods, using a fleet of identical vehicles with restricted capacity, to customers with service time windows. However, there are other objectives, and having a range of solutions representing the trade-offs between objectives is crucial for many applications. Although previous research has used evolutionary methods for solving this problem, it has rarely concentrated on the optimization of more than one objective, and hardly ever explicitly considered the diversity of solutions. This paper proposes and analyzes a novel multi-objective evolutionary algorithm, which incorporates methods for measuring the similarity of solutions, to solve the multi-objective problem. The algorithm is applied to a standard benchmark problem set, showing that when the similarity measure is used appropriately, the diversity and quality of solutions is higher than when it is not used, and the algorithm achieves highly competitive results compared with previously published studies and those from a popular evolutionary multi-objective optimizer.  相似文献   

7.
For many-objective optimization problems, how to get a set of solutions with good convergence and diversity is a difficult and challenging work. In this paper, a new decomposition based evolutionary algorithm with uniform designs is proposed to achieve the goal. The proposed algorithm adopts the uniform design method to set the weight vectors which are uniformly distributed over the design space, and the size of the weight vectors neither increases nonlinearly with the number of objectives nor considers a formulaic setting. A crossover operator based on the uniform design method is constructed to enhance the search capacity of the proposed algorithm. Moreover, in order to improve the convergence performance of the algorithm, a sub-population strategy is used to optimize each sub-problem. Comparing with some efficient state-of-the-art algorithms, e.g., NSGAII-CE, MOEA/D and HypE, on six benchmark functions, the proposed algorithm is able to find a set of solutions with better diversity and convergence.  相似文献   

8.
The Multi-objective Undirected Capacitated Arc Routing Problem (MUCARP) is the optimization problem aimed at finding the best strategy for servicing a subset of clients localized along the links of a logistic network, by using a fleet of vehicles and optimizing more than one objective. In general, the first goal consists in minimizing the total transportation cost, and in this case the problem brings back to the well-known Undirected Capacitated Arc Routing Problem (UCARP). The motivation behind the study of the MUCARP lies in the study of real situations where companies working in the logistic distribution field deal with complex operational strategies, in which different actors (trucks, drivers, customers) have to be allocated within an unified framework by taking into account opposite needs and different employment contracts. All the previous considerations lead to the MUCARP as a benchmark optimization problem for modeling practical situations. In this paper, the MUCARP is heuristically tackled. In particular, three competitive objectives are minimized at the same time: the total transportation cost, the longest route cost (makespan) and the number of vehicles (i.e., the total number of routes). An approximation of the optimal Pareto front is determined through an optimization-based heuristic procedure, whose performances are tested and analyzed on classical benchmark instances.  相似文献   

9.
The capacitated arc routing problem (CARP) is a very hard vehicle routing problem for which the objective—in its classical form—is the minimization of the total cost of the routes. In addition, one can seek to minimize also the cost of the longest trip.In this paper, a multi-objective genetic algorithm is presented for this more realistic CARP. Inspired by the second version of the Non-dominated sorted genetic algorithm framework, the procedure is improved by using good constructive heuristics to seed the initial population and by including a local search procedure. The new framework and its different flavour is appraised on three sets of classical CARP instances comprising 81 files.Yet designed for a bi-objective problem, the best versions are competitive with state-of-the-art metaheuristics for the single objective CARP, both in terms of solution quality and computational efficiency: indeed, they retrieve a majority of proven optima and improve two best-known solutions.  相似文献   

10.
    
Heavy maritime traffic and the subsequent increase in vessel density in anchorages have recently become a focal issue in maritime traffic safety. In this study, we consider the problem of determining the optimal berth locations of incoming vessels in an anchorage area with the goals of maximizing utilization and minimizing the risk of accidents. We introduce novel performance metrics aimed at measuring achievement of these two goals. In this context, we propose a multi-objective optimization strategy and benchmark it against current state-of-the-art anchorage planning algorithms using real-world data as well as Monte Carlo simulations. Our results indicate that the proposed strategy yields much safer berth locations while maintaining similar utilization levels.  相似文献   

11.
This study demonstrates the application of an improved Evolutionary optimization Algorithm (EA), titled Multi-Objective Complex Evolution Global Optimization Method with Principal Component Analysis and Crowding Distance Operator (MOSPD), for the hydropower reservoir operation of the Oroville–Thermalito Complex (OTC) – a crucial head-water resource for the California State Water Project (SWP). In the OTC's water-hydropower joint management study, the nonlinearity of hydropower generation and the reservoir's water elevation–storage relationship are explicitly formulated by polynomial function in order to closely match realistic situations and reduce linearization approximation errors. Comparison among different curve-fitting methods is conducted to understand the impact of the simplification of reservoir topography. In the optimization algorithm development, techniques of crowding distance and principal component analysis are implemented to improve the diversity and convergence of the optimal solutions towards and along the Pareto optimal set in the objective space. A comparative evaluation among the new algorithm MOSPD, the original Multi-Objective Complex Evolution Global Optimization Method (MOCOM), the Multi-Objective Differential Evolution method (MODE), the Multi-Objective Genetic Algorithm (MOGA), the Multi-Objective Simulated Annealing approach (MOSA), and the Multi-Objective Particle Swarm Optimization scheme (MOPSO) is conducted using the benchmark functions. The results show that best the MOSPD algorithm demonstrated the best and most consistent performance when compared with other algorithms on the test problems. The newly developed algorithm (MOSPD) is further applied to the OTC reservoir releasing problem during the snow melting season in 1998 (wet year), 2000 (normal year) and 2001 (dry year), in which the more spreading and converged non-dominated solutions of MOSPD provide decision makers with better operational alternatives for effectively and efficiently managing the OTC reservoirs in response to the different climates, especially drought, which has become more and more severe and frequent in California.  相似文献   

12.
    
Data Envelopment Analysis (DEA) uses the best favorable weight set for the inputs and outputs of each decision‐making unit (DMU) to obtain its best possible score. Hence, this score can be considered as an upper bound of the real efficiency score. If we also use the least favorable weight set of each DMU, then a lower bound of the efficiency score can also be obtained. So, instead of one score, we can find an interval that gives all possible values of the efficiency score for each DMU. The aim of this paper is to propose an approach for determining efficiency intervals and setting up a full ranking of DMUs based on these intervals. We incorporate explicitly the decision‐maker's preferences in two phases. The first phase is for obtaining efficiency intervals, by introducing some restrictions on the input and output weights. The second one is for ranking the intervals based on the combination of the lower and the upper bounds of the efficiency intervals. The developed formulations will be illustrated through some numerical examples.  相似文献   

13.
物流配送路径多目标优化的聚类-改进遗传算法   总被引:20,自引:2,他引:18  
探讨运输车辆路线安排调度问题的解决方法,提出一种先用优先级综合聚类分析法将客户分类,再用带有控制开关系统的改进遗传算法求解多目标VRP的优化方法。构造了一种随机开关,以此控制遗传算法中的变异运算,增加了群体的多样性,避免了遗传算法中“局部最优现象”的发生。计算机仿真实验证明了该算法的有效性。  相似文献   

14.
针对当前无线网络路由算法存在丢包率高、节点拥塞严重的难题,提出一种基于改进蚁群优化算法的网络服务质量路由算法。首先根据无线网络的特点选择带宽、端到端的延迟、数据包丢失率以及链路花费作为QoS参数,并建立一个多约束网络服务质量路由优化问题的数学模型,然后采用具有正反馈机制和搜索能力强的蚁群优化算法对数学模型进行求解,并根据无线网络路由特点对标准蚁群优化算法进行改进,提高其搜索性能,最后采用具体仿真实验对路由算法的性能进行测试。实验结果表明,改进蚁群优化算法在满足网络质量要求的条件下,不仅降低了网络平均延时,而且减少了网络数据丢包率,性能优于其它算法。  相似文献   

15.
Multi-objective evolutionary algorithm based on decomposition (MOEA/D) provides an excellent algorithmic framework for solving multi-objective optimization problems. It decomposes a target problem into a set of scalar sub-problems and optimizes them simultaneously. Due to its simplicity and outstanding performance, MOEA/D has been widely studied and applied. However, for solving the multi-objective vehicle routing problem with time windows (MO-VRPTW), MOEA/D faces a difficulty that many sub-problems have duplicated best solutions. It is well-known that MO-VRPTW is a challenging problem and has very few Pareto optimal solutions. To address this problem, a novel selection operator is designed in this work to enhance the original MOEA/D for dealing with MO-VRPTW. Moreover, three local search methods are introduced into the enhanced algorithm. Experimental results indicate that the proposed algorithm can obtain highly competitive results on Solomon׳s benchmark problems. Especially for instances with long time windows, the proposed algorithm can obtain more diverse set of non-dominated solutions than the other algorithms. The effectiveness of the proposed selection operator is also demonstrated by further analysis.  相似文献   

16.
Preference articulation in multi-objective optimization could be used to improve the pertinency of solutions in an approximated Pareto front. That is, computing the most interesting solutions from the designer's point of view in order to facilitate the Pareto front analysis and the selection of a design alternative. This articulation can be achieved in an a priori, progressive, or a posteriori manner. If it is used within an a priori frame, it could focus the optimization process toward the most promising areas of the Pareto front, saving computational resources and assuring a useful Pareto front approximation for the designer. In this work, a physical programming approach embedded in an evolutionary multi-objective optimization is presented as a tool for preference inclusion. The results presented and the algorithm developed validate the proposal as a potential tool for engineering design by means of evolutionary multi-objective optimization.  相似文献   

17.
    
ContextComponent identification during software design phase denotes a process of partitioning the functionalities of a system into distinct components. Several component identification methods have been proposed that cannot be customized to software architect’s preferences.ObjectivesIn this paper, we propose a clustering-based method by the name of CCIC (Clustering analysis Classes to Identify software Components) to identify logical components from analysis classes according to software architect’s preferences.MethodCCIC uses a customized HEA (Hierarchical Evolutionary Algorithm) to automatically classify analysis classes into appropriate logical components and avoid the problem of searching for the proper number of components. Furthermore, it allows software architects to determine the constraints in their deployment and implementation framework.ResultsA series of experiments were conducted for four real-world case studies according to various proposed weighting schemes.ConclusionAccording to experimental results, it is concluded that CCIC can identify more cohesive and independent components with respect to software architect’s preferences in comparison with the existing component identification methods such as FCA-based and CRUD-based methods.  相似文献   

18.
This paper presents a comparative analysis of three versions of an evolutionary algorithm in which the decision maker's preferences are incorporated using an outranking relation and preference parameters associated with the ELECTRE TRI method. The aim is using the preference information supplied by the decision maker to guide the search process to the regions where solutions more in accordance with his/her preferences are located, thus narrowing the scope of the search and reducing the computational effort. An example dealing with a pertinent problem in electrical distribution network is used to compare the different versions of the algorithm and illustrate how meaningful information can be elicited from a decision maker and used in the operational framework of an evolutionary algorithm to provide decision support in real-world problems.  相似文献   

19.
The selection of an appropriate and stable route that enables suitable load balancing of Internet gateways is an important issue in hybrid mobile ad hoc networks. The variables employed to perform routing must ensure that no harm is caused that might degrade other network performance metrics such as delay and packet loss. Moreover, the effect of such routing must remain affordable, such as low losses or extra signaling messages. This paper proposes a new method, Steady Load Balancing Gateway Election, based on a fuzzy logic system to achieve this objective. The fuzzy system infers a new routing metric named cost that considers several networks performance variables to select the best gateway. To solve the problem of defining the fuzzy sets, they are optimized by a genetic algorithm whose fitness function also employs fuzzy logic and is designed with four network performance metrics. The promising results confirm that ad hoc networks are characterized by great uncertainty, so that the use of Computational Intelligence methods such as fuzzy logic or genetic algorithms is highly recommended.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号