首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malignant melanoma is responsible for the majority of skin cancer-related deaths. The methods of cancer treatment include surgical removal, chemotherapy, immunotherapy, and targeted therapy. However, neither of these methods gives satisfactory results. Therefore, the development of new anticancer therapeutic strategies is very important and may extend the life span of people suffering from melanoma. The aim of this study was to examine the effect of ketoprofen (KTP) and UVA radiation (UVAR) therapy on cell proliferation, apoptosis, and cell cycle distribution in both melanotic melanoma cells (COLO829) and human melanocytes (HEMn-DP) in relation to its supportive effect in the treatment of melanoma. The therapy combining the use of pre-incubation with KTP and UVAR causes a significant increase in the anti-proliferative properties of ketoprofen towards melanoma cells and the co-exposure of melanotic melanoma cells induced apoptosis shown as the mitochondrial membrane breakdown, cell-cycle deregulation, and DNA fragmentation. Moreover, co-treatment led to GSH depletion showing its pro-apoptotic effect dependent on ROS overproduction. The treatment did not show a significant effect on normal cells—melanocytes—which indicates its high selectivity. The results suggest a possible benefit from the use of the ketoprofen and ultraviolet A irradiation as a new concept of melanotic melanoma therapy.  相似文献   

2.
Ultraviolet radiation, especially UVA, can penetrate the lens, reach the retina, and induce oxidative stress to retinal pigment epithelial (RPE) cells. Even though it is weakly absorbed by protein and DNA, it may trigger the production of reactive oxygen species (ROS) and generate oxidative injury; oxidative injury to the retinal pigment epithelium has been implicated to play a contributory role in age-related macular degeneration (AMD). Studies showed that resveratrol, an abundant and active component of red grapes, can protect several cell types from oxidative stress. In this study, adult RPE cells being treated with different concentrations of resveratrol were used to evaluate the protective effect of resveratrol on RPE cells against UVA-induced damage. Cell viability assay showed that resveratrol reduced the UVA-induced decrease in RPE cell viability. Through flow cytometry analysis, we found that the generation of intracellular H2O2 induced by UVA irradiation in RPE cells could be suppressed by resveratrol in a concentration-dependent manner. Results of Western blot analysis demonstrated that resveratrol lowered the activation of UVA-induced extracellular signal-regulated kinase, c-jun-NH2 terminal kinase and p38 kinase in RPE cells. In addition, there was also a reduction in UVA-induced cyclooxygenase-2 (COX-2) expression in RPE cells pretreated with resveratrol. Our observations suggest that resveratrol is effective in preventing RPE cells from being damaged by UVA radiation, and is worth considering for further development as a chemoprotective agent for the prevention of early AMD.  相似文献   

3.
4.
Sulfur‐substituted nucleobases (i.e., thiobases) are a prospective class of compounds for clinical and cosmetic topical phototherapies. Recent investigations of several thiobases have revealed the ultrafast and efficient population of reactive triplet states upon ultraviolet‐A (UVA) irradiation and the subsequent generation of singlet oxygen in high yield. In this contribution, we examine the photosensitizing activities of three of the most promising thiobase derivatives discovered to date: 2,4‐dithiothymine, 2,4‐dithiouracil, and 2,6‐dithiopurine. These derivatives are shown to decrease the proliferation of human epidermoid carcinoma cells by up to 63 % in vitro, only upon activation with a low dose of UVA radiation (5 J cm?2). The generation of reactive oxygen species plays a minor role in the mode of action, suggesting these dithiobases may be effective within oxygen‐deficient environments. Importantly, the photosensitized activity correlates with the magnitude of the triplet lifetime, which should guide the molecular design of next‐generation photodynamic agents.  相似文献   

5.
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gut. Available drugs aim to suppress gut inflammation. These drugs have significantly delayed disease progression and improved patients’ quality of life. However, the disease continues to progress, underscoring the need to develop novel therapies. Aside from chronic gut inflammation, IBD patients also experience a leaky gut problem due to damage to the intestinal epithelial layer. In this regard, epithelial regeneration and repair are mediated by intestinal stem cells. However, no therapies are available to directly enhance the intestinal stem cells’ regenerative and repair function. Recently, it was shown that active vitamin D, i.e., 1,25-dihydroxyvitamin D or 1,25(OH)2D, was necessary to maintain Lgr5+ intestinal stem cells, actively cycling under physiological conditions. In this study, we used two strategies to investigate the role of 1,25(OH)2D in intestinal stem cells’ regenerative function. First, to avoid the side effects of systemic high 1,25(OH)2D conditions, we used our recently developed novel strategy to deliver locally high 1,25(OH)2D concentrations specifically to inflamed intestines. Second, because of the Lgr5+ intestinal stem cells’ active cycling status, we used a pulse-and-chase strategy via 5-bromo-2′-deoxyuridine (BrdU) labeling to trace the Lgr5+ stem cells through the whole epithelial regeneration process. Our data showed that locally high 1,25(OH)2D concentrations enhanced intestinal stem cell migration. Additionally, the migrated cells differentiated into mature epithelial cells. Our data, therefore, suggest that local delivery of high 1,25(OH)2D concentrations is a promising strategy to augment intestinal epithelial repair in IBD patients.  相似文献   

6.
Minocycline is a semisynthetic tetracycline antibiotic. In addition to its antibacterial activity, minocycline shows many non-antibiotic, beneficial effects, including antioxidative action. The property is responsible, e.g., for anti-inflammatory, neuroprotective, and cardioprotective effects of the drug. However, long-term pharmacotherapy with minocycline may lead to hyperpigmentation of the skin. The reasons for the pigmentation disorders include the deposition of the drug and its metabolites in melanin-containing cells and the stimulation of melanogenesis. The adverse drug reaction raises a question about the influence of the drug on melanocyte homeostasis. The study aimed to assess the effect of minocycline on redox balance in human normal melanocytes HEMn-LP exposed to hydrogen peroxide and UVA radiation. The obtained results indicate that minocycline induced oxidative stress in epidermal human melanocytes. The drug inhibited cell proliferation, decreased the level of reduced thiols, and stimulated the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). The described changes were accompanied by an increase in the intracellular level of ROS. On the other hand, pretreatment with minocycline at the same concentrations increased cell viability and significantly attenuated the oxidative stress in melanocytes exposed to hydrogen peroxide and UVA radiation. Moreover, the molecular docking analysis revealed that the different influence of minocycline and other tetracyclines on CAT activity can be related to the location of the binding site.  相似文献   

7.
Malignant melanoma is a lethal skin cancer containing melanoma-initiating cells (MIC) implicated in tumorigenesis, invasion, and drug resistance, and is characterized by the elevated expression of stem cell markers, including CD133. The siRNA knockdown of CD133 enhances apoptosis induced by the MEK inhibitor trametinib in melanoma cells. This study investigates the underlying mechanisms of CD133’s anti-apoptotic activity in patient-derived BAKP and POT cells, harboring difficult-to-treat NRASQ61K and NRASQ61R drivers, after CRISPR-Cas9 CD133 knockout or Dox-inducible expression of CD133. MACS-sorted CD133(+) BAKP cells were conditionally reprogrammed to derive BAKR cells with sustained CD133 expression and MIC features. Compared to BAKP, CD133(+) BAKR exhibit increased cell survival and reduced apoptosis in response to trametinib or the chemotherapeutic dacarbazine (DTIC). CRISPR-Cas9-mediated CD133 knockout in BAKR cells (BAKR-KO) re-sensitized cells to trametinib. CD133 knockout in BAKP and POT cells increased trametinib-induced apoptosis by reducing anti-apoptotic BCL-xL, p-AKT, and p-BAD and increasing pro-apoptotic BAX. Conversely, Dox-induced CD133 expression diminished apoptosis in both trametinib-treated cell lines, coincident with elevated p-AKT, p-BAD, BCL-2, and BCL-xL and decreased activation of BAX and caspases-3 and -9. AKT1/2 siRNA knockdown or inhibition of BCL-2 family members with navitoclax (ABT-263) in BAKP-KO cells further enhanced caspase-mediated apoptotic PARP cleavage. CD133 may therefore activate a survival pathway where (1) increased AKT phosphorylation and activation induces (2) BAD phosphorylation and inactivation, (3) decreases BAX activation, and (4) reduces caspases-3 and -9 activity and caspase-mediated PARP cleavage, leading to apoptosis suppression and drug resistance in melanoma. Targeting nodes of the CD133, AKT, or BCL-2 survival pathways with trametinib highlights the potential for combination therapies for NRAS-mutant melanoma stem cells for the development of more effective treatments for patients with high-risk melanoma.  相似文献   

8.
Cutaneous melanoma emerges from the malignant transformation of melanocytes and is the most aggressive type of skin cancer. The progression can occur in different stages: radial growth phase (RGP), vertical growth phase (VGP), and metastasis. Reactive oxygen species contribute to all phases of melanomagenesis through the modulation of oncogenic signaling pathways. Tetrahydrobiopterin (BH4) is an important cofactor for NOS coupling, and an uncoupled enzyme is a source of superoxide anion (O2•−) rather than nitric oxide (NO), altering the redox homeostasis and contributing to melanoma progression. In the present work, we showed that the BH4 amount varies between different cell lines corresponding to distinct stages of melanoma progression; however, they all presented higher O2•− levels and lower NO levels compared to melanocytes. Our results showed increased NOS expression in melanoma cells, contributing to NOS uncoupling. BH4 supplementation of RGP cells, and the DAHP treatment of metastatic melanoma cells reduced cell growth. Finally, Western blot analysis indicated that both treatments act on the PI3K/AKT and MAPK pathways of these melanoma cells in different ways. Disruption of cellular redox homeostasis by the altered BH4 concentration can be explored as a therapeutic strategy according to the stage of melanoma.  相似文献   

9.
Titanium dioxide (TiO2) photocatalysis is a possible alternative/complementary technology for water purification. Attempts to increase the overall efficiency of the process include using higher energy UV to gain better quantum efficiency and electrochemically assisting the process by the application of an external electrical potential. In this work, nanocrystalline TiO2 films, prepared on borosilicate glass and indium-doped tin oxide (ITO) borosilicate glass, were used to investigate the photocatalytic and electrochemically assisted photocatalytic oxidation of formic acid under UVA and UVB irradiation. The experiments were carried out in a stirred tank reactor with high mass transfer characteristics. The rate of formic acid oxidation under UVB irradiation was 30% greater as compared to UVA irradiation. A maximum Φapp of 9% was obtained under UVA irradiation in 100% O2 under open circuit or +1.0 V (SCE) applied potential. A maximum Φapp of 20.3% was obtained under UVB irradiation with 100% O2 using TiO2 on borosilicate glass. Φapp was 19% for +1.0 V, 100% O2, using TiO2 on ITO borosilicate glass under UVB irradiation. The increase in oxidation rates and Φapp with UVB irradiation are due to the higher extinction coefficient of TiO2 at shorter wavelengths and/or the promotion of conduction band electrons to higher more stable states, thus reducing the rate of recombination of charge carriers. The use of a UVB source as compared to a UVA source results in a significant increase in the rate of oxidation and increased apparent quantum yields, however, a cost analysis of the process would be required to determine the economic viability of employing UVB sources. Electrochemically assisted photocatalysis may prove beneficial in large-scale reactors where mass transfer limitations exist.  相似文献   

10.
11.
Disruption of retinal pigment epithelial (RPE barrier integrity is a hallmark feature of various retinal blinding diseases, including diabetic macular edema and age-related macular degeneration, but the underlying causes and pathophysiology are not completely well-defined. One of the most conserved phenomena in biology is the progressive decline in mitochondrial function with aging leading to cytopathic hypoxia, where cells are unable to use oxygen for energy production. Therefore, this study aimed to thoroughly investigate the role of cytopathic hypoxia in compromising the barrier functionality of RPE cells. We used Electric Cell-Substrate Impedance Sensing (ECIS) system to monitor precisely in real time the barrier integrity of RPE cell line (ARPE-19) after treatment with various concentrations of cytopathic hypoxia-inducing agent, Cobalt(II) chloride (CoCl2). We further investigated how the resistance across ARPE-19 cells changes across three separate parameters: Rb (the electrical resistance between ARPE-19 cells), α (the resistance between the ARPE-19 and its substrate), and Cm (the capacitance of the ARPE-19 cell membrane). The viability of the ARPE-19 cells and mitochondrial bioenergetics were quantified with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and seahorse technology, respectively. ECIS measurement showed that CoCl2 reduced the total impedance of ARPE-19 cells in a dose dependent manner across all tested frequencies. Specifically, the ECIS program’s modelling demonstrated that CoCl2 affected Rb as it begins to drastically decrease earlier than α or Cm, although ARPE-19 cells’ viability was not compromised. Using seahorse technology, all three concentrations of CoCl2 significantly impaired basal, maximal, and ATP-linked respirations of ARPE-19 cells but did not affect proton leak and non-mitochondrial bioenergetic. Concordantly, the expression of a major paracellular tight junction protein (ZO-1) was reduced significantly with CoCl2-treatment in a dose-dependent manner. Our data demonstrate that the ARPE-19 cells have distinct dielectric properties in response to cytopathic hypoxia in which disruption of barrier integrity between ARPE-19 cells precedes any changes in cells’ viability, cell-substrate contacts, and cell membrane permeability. Such differences can be used in screening of selective agents that improve the assembly of RPE tight junction without compromising other RPE barrier parameters.  相似文献   

12.
Post-traumatic OA (PTOA) is often triggered by injurious, high-impact loading events which result in rapid, excessive chondrocyte cell death and a phenotypic shift in residual cells toward a more catabolic state. As such, the identification of a disease-modifying OA drug (DMOAD) that can protect chondrocytes from death following impact injury, and thereby prevent cartilage degradation and progression to PTOA, would offer a novel intervention. We have previously shown that urocortin-1 (Ucn) is an essential endogenous pro-survival factor that protects chondrocytes from OA-associated pro-apoptotic stimuli. Here, using a drop tower PTOA-induction model, we demonstrate the extent of Ucn’s chondroprotective role in cartilage explants exposed to excessive impact load. Using pathway-specific agonists and antagonists, we show that Ucn acts to block load-induced intracellular calcium accumulation through blockade of the non-selective cation channel Piezo1 rather than TRPV4. This protective effect is mediated primarily through the Ucn receptor CRF-R1 rather than CRF-R2. Crucially, we demonstrate that the chondroprotective effect of Ucn is maintained whether it is applied pre-impact or post-impact, highlighting the potential of Ucn as a novel DMOAD for the prevention of injurious impact overload-induced PTOA.  相似文献   

13.
14.
Phototoxicity of fluoroquinolones is connected with oxidative stress induction. Lomefloxacin (8-halogenated derivative) is considered the most phototoxic fluoroquinolone and moxifloxacin (8-methoxy derivative) the least. Melanin pigment may protect cells from oxidative damage. On the other hand, fluoroquinolone–melanin binding may lead to accumulation of drugs and increase their toxicity to skin. The study aimed to examine the antioxidant defense system status in normal melanocytes treated with lomefloxacin and moxifloxacin and exposed to UV-A radiation. The obtained results demonstrated that UV-A radiation enhanced only the lomefloxacin-induced cytotoxic effect in tested cells. It was found that fluoroquinolones alone and with UV-A radiation decreased superoxide dismutase (SOD) activity and SOD1 expression. UV-A radiation enhanced the impact of moxifloxacin on hydrogen peroxide-scavenging enzymes. In turn, lomefloxacin alone increased the activity and the expression of catalase (CAT) and glutathione peroxidase (GPx), whereas UV-A radiation significantly modified the effects of drugs on these enzymes. Taken together, both analyzed fluoroquinolones induced oxidative stress in melanocytes, however, the molecular and biochemical studies indicated the miscellaneous mechanisms for the tested drugs. The variability in phototoxic potential between lomefloxacin and moxifloxacin may result from different effects on the antioxidant enzymes.  相似文献   

15.
Ion channels are pore-forming proteins that allow ions to flow across plasma membranes and intracellular organelles in both excitable and non-excitable cells. They are involved in the regulation of several biological processes (i.e., proliferation, cell volume and shape, differentiation, migration, and apoptosis). Recently, the aberrant expression of ion channels has emerged as an important step of malignant transformation, tumor progression, and drug resistance, leading to the idea of “onco-channelopathy”. Here, we review the contribution of ion channels and transporters in multiple myeloma (MM), a hematological neoplasia characterized by the expansion of tumor plasma cells (MM cells) in the bone marrow (BM). Deregulation of ion channels sustains MM progression by modulating intracellular pathways that promote MM cells’ survival, proliferation, and drug resistance. Finally, we focus on the promising role of ion channels as therapeutic targets for the treatment of MM patients in a combination strategy with currently used anti-MM drugs to improve their cytotoxic activity and reduce adverse effects.  相似文献   

16.
The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies.  相似文献   

17.
Rotenone, isolated from roots of derris plant, has been shown to possess various biological activities, which lead to attempting to develop a potent drug against several diseases. However, recent studies have demonstrated that rotenone has the potential to induce several adverse effects such as a neurodegenerative disease. Radiolytic transformation of the rotenone with gamma-irradiation created a new product, named rotenoisin B. The present work was designed to investigate the anticancer activity of rotenoisin B with low toxicity and its molecular mechanism in hepatic cancer cells compared to a parent compound, rotenone. Our results showed rotenoisin B inhibited hepatic cancer cells’ proliferation in a dose dependent manner and increased in apoptotic cells. Interestingly, rotenoisin B showed low toxic effects on normal cells compared to rotenone. Mitochondrial transmembrane potential has been decreased, which leads to cytochrome c release. Down regulation of anti-apoptotic Bcl-2 levels as well as the up regulation of proapoptotic Bax levels were observed. The cleaved PARP (poly ADP-ribose polymerase) level increased as well. Moreover, phosphorylation of extracellular signal regulated kinase (ERK) and p38 slightly up regulated and intracellular reactive oxygen species (ROS) increased as well as cell cycle arrest predominantly at the G2/M phase observed. These results suggest that rotenoisin B might be a potent anticancer candidate similar to rotenone in hepatic cancer cells with low toxicity to normal cells even at high concentrations compared to rotenone.  相似文献   

18.
Photocatlytic removal of three pharmaceutical and personal care products pollutants using novel TiO2–Coconut Shell Powder (TCNSP) composite was investigated. The photocatalytic degradation rate of PPCPs generally increased with increasing light intensity and dissolved oxygen concentration. The degradation rate decreased with increasing initial concentration of PPCPs. The PPCPs concentration decreased substantially under irradiation of UVC when used in conjunction with the TCNSP composite. A number of composite/radiation types and intensities were tested. The concentration rate decrease trend was as: UVC/TCNSP > UVA/TCNSP > UVC > UVA. Under the UVC/TCNP combination, 99% removal was achieved compared to 30% for TiO2.  相似文献   

19.
We review processes by which different sounds, such as meditation music, mantra, kindness, or hatred expressions, and noises induce responses from cells and their components. We define ‘good’ or ‘bad’ sounds as those enhancing or inhibiting the cell’s biological activity, respectively. It is highlighted that the cellular dynamics results in a coherent organization with the formation of ordered patterns due to long-range correlations among the system constituents. Due to coherence, in the framework of quantum field theory, extended domains become independent of quantum fluctuations. Non-dissipative energy transfer on macromolecule chains is briefly discussed. Observed fractal features are analyzed by the fast Fourier transform and a linear relationship between logarithms of conjugate variables is observed. The fractal relation to the generation of forms (morphogenesis) and to the transition from form to form (metamorphosis) is commented. The review is also motivated by the suggestions coming from the cells’ responses, which show their ability to move from the syntactic level of the sound component frequencies to the semantic level of their collective envelope. The process by which sounds are selected to be good or bad sounds sheds some light on the problem of the construction of languages.  相似文献   

20.
UVA contributes to the pathogenesis of skin aging by downregulation of procollagen I content and induction of matrix metalloproteinase (MMP)-associated responses. Application of antioxidants such as lycopene has been demonstrated as a convenient way to achieve protection against skin aging. Lycogen™, derived from the extracts of Rhodobacter sphaeroides, exerts several biological effects similar to that of lycopene whereas most of its anti-aging efficacy remains uncertain. In this study, we attempted to examine whether Lycogen™ could suppress malondialdehyde (MDA) accumulation and restore downregulated procollagen I expression induced by UVA exposure. In human dermal fibroblasts Hs68 cells, UVA repressed cell viability and decreased procollagen I protein content accompanied with the induction of MMP-1 and MDA accumulation. Remarkably, incubation with 50 μM Lycogen™ for 24 h ameliorated UVA-induced cell death and restored UVA-induced downregulation of procollagen in a dose-related manner. Lycogen™ treatment also prevented the UVA-induced MMP-1 upregulation and intracellular MDA generation in Hs68 cells. Activation of NFκB levels, one of the downstream events induced by UVA irradiation and MMP-1 induction, were also prevented by Lycogen™ administration. Taken together, our findings demonstrate that Lycogen™ may be an alternative agent that prevents UVA-induced skin aging and could be used in cosmetic and pharmaceutical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号