共查询到19条相似文献,搜索用时 62 毫秒
1.
应用小波-人工神经网络组合模型研究电力负荷预报 总被引:2,自引:3,他引:2
针对负荷时间序列的非线性和多时间尺度特性.提出了将小波分析与人工神经网络相结合进行负荷预报的方法——小波-人工神经网络组合模型。该模型吸取了小波分析的多分辨功能和人工神经网络的非线性逼近能力。以月、日平均负荷预报为例对模型进行验证.结果表明:该模型的拟合、检验精度较高。 相似文献
2.
为探讨小波变换中小波基函数对模型预报精度的影响,选取三个小波基函数haar、db10、sym8对原始序列进行小波变换预处理,并分别建立人工神经网络模型(ANN)和基于不同小波基函数的W-ANN(haar)、W-ANN(db10)、W-ANN(sym8)模型进行预报。以三峡水库月径流为例,采用纳什效率系数、平均绝对误差及平均相对误差对建立模型的预报效果进行比较。结果显示,采用三个小波基函数haar、db10、sym8对数据进行小波变换预处理后的模型精度均得到了不同程度提高,W-ANN(sym8)模型在各项指标上表现最好。表明小波基函数的选择对模型预报精度结果影响较大,选择合适的小波基函数至关重要。 相似文献
3.
4.
基于BP神经网络模型对黄河源区的降水、温度进行了统计降尺度研究,探讨了统计降尺度模式中考虑预报量的敏感大气环流因子随季节变化时对降水的降尺度效果的影响。结果表明,人工神经网络降尺度模型能成功地捕捉黄河源区的日平均温度及气温极值的年际变化趋势,纳什效率系数均达0.95以上;比较CON模型及PIE模型对降水指标的模拟能力,发现两种模型对1961~2000年不同降水指标时间序列的模拟能力相当;从季节尺度看,在冬季PIE模型显示了更好的模拟能力,但在夏秋季节PIE模型对多数降水指标的模拟能力略不及CON模型。总之,CON模型对降水指标的模拟效果更好。 相似文献
5.
6.
7.
8.
9.
基于遗传程序设计的中长期径流预报模型研究与应用 总被引:1,自引:3,他引:1
应用遗传程序设计建立径流中长期预报模型,结合径流序列数据的特点通过自相关分析确定其滞时输入变量的个数,采用均方误差作为其适应度评价函数,以漫湾实测月径流序列(1953~2003年)和洪家渡实测月径流序列(1951~2004年)为例,通过与ARMA模型、人工神经网络模型的预报结果比较,显示该模型应用于径流中长期预报简单易行且精度较高。 相似文献
10.
以云南省漫湾水电站历史径流状况为研究对象,运用三层前馈反向传播神经网络模型对径流进行中长期预报。为解决神经网络预报模型结构难以确定的问题,尝试在预报过程中通过改变该网络模型的结构并对得到的结果进行比较,从而找到适合该径流序列的最佳神经网络模型结构。实际应用表明,使用该结构的模型在实际预报过程中取得了良好的效果。 相似文献
11.
为了提高CNG发动机排气温度预测精度,基于BP、RBF和GRNN神经网络建立了3种排气温度的预测模型。开展了CNG发动机台架实验,测量了不同工况条件下发动机的排气温度,利用实验值对模型进行训练,并预测了不同发动机转速、空气进气量、点火提前角等条件下的排气温度,将预测值与实验值进行了对比分析,评估了不同预测模型的准确性。结果表明:BP、RBF和GRNN 3种神经网络的误差分别为3.5%、2.8%和3.1%。RBF神经网络的预测误差比BP和GRNN神经网络的误差小,稳定性强,更适合CNG发动机的排气温度预测。 相似文献
12.
13.
14.
基于气象因素的短期电力负荷ANN预报模型 总被引:2,自引:3,他引:2
提出了一种基于气象因素,利用人工神经元网络进行电力系统短期负荷预报的方法,该方法比较全面地考虑了气象因素对电力系统负荷的影响,操作方便,易有,仿真计算和实例预报结果表明,预报准确较高。 相似文献
15.
16.
17.
为有效预测回热系统故障,分别基于Traingda、Traincgf和Trainrp算法建立回热系统故障征兆和故障现象的误差反向传播神经网络预测模型,输入层为故障征兆,输出层为故障现象。以某电厂的实测数据对3种预测模型进行训练和测试,训练和测试结果表明:基于Traincgf算法建立的预测模型测试误差最小、收敛速度较快。其模型网络为9-7-9结构,动量因子为0.6,学习速率为0.8。基于Traincgf算法建立的回热系统故障征兆和故障现象的误差反向传播神经网络预测模型可有效通过故障征兆预测回热系统的故障现象,对回热系统的故障检测有一定的参考价值。 相似文献
18.
本文建立了制冷机组性能神经网络模型,并用测试数据进行了训练。结果表明,人工神经网络方法是分析制冷机组性能的一种有效途径。 相似文献