首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of double-layer capacitors, based on carbon materials, were analysed: (1) an imaginary nano-capacitor assembled from single graphene sheets, separated by electrolyte layers (thickness of nanometers) and (2) a capacitor based on porous carbons. It has been shown that the maximum specific surface of a porous carbon material which may be used for the construction of a capacitor is ca. 2600 m2 g−1. The maximum energy density of an imaginary double-layer ‘nano-capacitor’, is close to 10 kJ kg−1 at a voltage of U = 1 V (aqueous electrolyte) of ca. 40–45 kJ kg−1 at U ≈ 2.3–2.5 V (organic electrolytes), and at the order of 100 kJ kg−1 at voltages close to 4 V (ionic liquids as electrolytes). The real device consists of porous electrodes and a separator, both soaked with the electrolyte, as well as current collectors. Consequently, the maximum electric capacity expressed versus the mass of the device (ca. 20–30 F g−1), is much smaller than the corresponding value expressed versus the mass of the carbon material (ca. 300 F g−1). In order to obtain the energy density of the device at a level of 100 kJ kg−1 (characteristic for the lead-acid battery), the capacitor with porous carbon electrodes should operate at voltages of ca. 4 V (ionic liquids as electrolytes). However, the specific power density of such a capacitor having an acceptable energy density (ca. 100 kJ kg−1) is relatively low (ca. 1 kW kg−1).  相似文献   

2.
An asymmetric supercapacitor with improved energy and power density, relative to a symmetric Ru oxide device, has been constructed with anthraquinone-modified carbon fabric (Spectracarb 2225) as the negative electrode and Ru oxide as the positive electrode. The performance of the supercapacitor was characterized by cyclic voltammetry and constant current discharging. Use of the anthraquinone-modified electrode extends the negative potential limit that can be used, relative to Ru oxide, and allows higher cell voltages to be used. The maximum energy density obtained was 26.7 Wh kg−1 and an energy density of 12.7 Wh kg−1 was obtained at a 0.8 A cm−2 discharge rate and average power density of 17.3 kW kg−1. The C-AQ/Ru oxide supercapacitor requires 64% less Ru relative to a symmetric Ru oxide supercapacitor.  相似文献   

3.
A high-energy density hybrid capacitor has been designed in organic electrolyte (1 mol L−1 LiPF6 in 1:1 ethylene carbonate (EC)/dimethyl carbonate (DMC)) using commercial grades of graphite and activated carbon for negative and positive electrodes, respectively. Different approaches have been explored for assembling the hybrid capacitor in order to achieve an optimum ratio between the energy and power density, while keeping a long cycle-life capability. In the optimized hybrid capacitor, the potential of the positive electrode ranges from 1.5 up to 5 V vs. Li/Li+, being extended to the whole stability window of the activated carbon in the organic electrolyte, whereas the potential of the negative electrode remains almost constant at around 0.1 V vs. Li/Li+. After balancing carefully the respective masses of the electrodes and appropriately formatting the system, it was found that a voltage of 4.5 V is the optimal value for avoiding a capacitance fading of the hybrid capacitor during cycling. Gravimetric and volumetric energy densities as high as 103.8 Wh kg−1 and 111.8 Wh L−1, respectively, were obtained. The noticeable value of volumetric energy density is 10 times higher than for symmetric or asymmetric capacitors built with the same activated carbon.  相似文献   

4.
Sol–gel derived Nafion/SiO2 hybrid membrane is prepared and employed as the separator for vanadium redox flow battery (VRB) to evaluate the vanadium ions permeability and cell performance. Nafion/SiO2 hybrid membrane shows nearly the same ion exchange capacity (IEC) and proton conductivity as pristine Nafion 117 membrane. ICP-AES analysis reveals that Nafion/SiO2 hybrid membrane exhibits dramatically lower vanadium ions permeability compared with Nafion membrane. The VRB with Nafion/SiO2 hybrid membrane presents a higher coulombic and energy efficiencies over the entire range of current densities (10–80 mA cm−2), especially at relative lower current densities (<30 mA cm−2), and a lower self-discharge rate compared with the Nafion system. The performance of VRB with Nafion/SiO2 hybrid membrane can be maintained after more than 100 cycles at a charge–discharge current density of 60 mA cm−2. The experimental results suggest that the Nafion/SiO2 hybrid membrane approach is a promising strategy to overcome the vanadium ions crossover in VRB.  相似文献   

5.
Supercapacitors with very high energy and power densities have been constructed with hydrous ruthenium oxide powder prepared by a sol–gel method and annealed at 110 °C. Novel features of the capacitors, which improve their performances, are the use of a carbon fibre paper support, a Nafion separator, and Nafion as a binder. 1 M sulfuric acid was employed as the electrolyte. The performances of the supercapacitors were characterized by cyclic voltammetry, impedance spectroscopy and constant current discharging. The interfacial capacitance increased linearly with increasing ruthenium oxide loading to at least 50 mg cm−2 on each electrode. The gravimetric capacitance of the Ru oxide measure by impedance reached 742 F g−1 (9.66 F cm−2) at a loading of 13.0 mg cm−2, and an interfacial capacitance of 34.9 F cm−2 (682 F g−1) was obtained at 51.2 mg cm−2. The average effective series resistance was 0.55 Ω, the electronic resistance of the electrodes was negligible, and their ionic resistances were <0.42 Ω. The average power density for full discharge at 1 A cm−2 for supercapacitors with 10 mg cm−2 Ru oxide increased by 39% when 5% Nafion binder was added. The maximum average power density for full discharge was 31.5 W g−1 while the maximum energy density was 31.2 Wh kg−1. At a 1 mA discharge rate a specific capacitance of 977 F g−1 of Ru oxide was obtained.  相似文献   

6.
Intercalation property of PF6 into graphitic carbon was studied for a hybrid capacitor with different ratio of cathode and anode amount. Graphene sheet distance increased with increasing PF6 intercalation amount and it saturated at 0.4 nm at high applied potential, which is corresponded to stage 2 structure. On the other hand, it was found that nano size pore into graphene sheet was introduced at higher applied potential with 20 times larger anode carbon and this nano porous carbon shows a large capacity for intercalation capacity of 147 mAh g−1. The estimated energy density of the hybrid capacitor using carbon with nano bubble structure was ca. 400 Wh kg−1.  相似文献   

7.
Studies of the electrochemical behavior of K0.27MnO2·0.6H2O in K2SO4 show the reversible intercalation/deintercalation of K+-ions in the lattice. An asymmetric supercapacitor activated carbon (AC)/0.5 mol l−1 K2SO4/K0.27MnO2·0.6H2O was assembled and tested successfully. It shows an energy density of 25.3 Wh kg−1 at a power density of 140 W kg−1; at the same time it keeps a very good rate behavior with an energy density of 17.6 Wh kg−1 at a power density of 2 kW kg−1 based on the total mass of the active electrode materials, which is higher than that of AC/0.5 mol l−1 Li2SO4/LiMn2O4. In addition, this asymmetric supercapacitor shows excellent cycling behavior without the need to remove oxygen from the electrolyte solution. This can be ascribed in part to the stability of the lamellar structure of K0.27MnO2·0.6H2O. This asymmetric aqueous capacitor has great promise for practical applications due to high energy density at high power density.  相似文献   

8.
Solution spun polyacrylonitrile (PAN), PAN/multi-wall carbon nanotube (MWCNT), and PAN/single-wall carbon nanotube (SWCNT) fibers containing 5 wt.% carbon nanotubes were stabilized in air and activated using CO2 and KOH. The surface area as determined by nitrogen gas adsorption was an order of magnitude higher for KOH activated fibers as compared to the CO2 activated fibers. The specific capacitance of KOH activated PAN/SWCNT samples was as high as 250 F g−1 in 6 M KOH electrolyte. Under the comparable KOH activation conditions, PAN and PAN/SWCNT fibers had comparable surface areas (BET surface area about 2200 m2 g−1) with pore size predominantly in the range of 1–5 nm, while surface area of PAN/MWCNT samples was significantly lower (BET surface area 970 m2 g−1). The highest capacitance and energy density was obtained for PAN/SWCNT samples, suggesting SWCNT advantage in charge storage. The capacitance behavior of these electrodes has also been tested in ionic liquids, and the energy density in ionic liquid is about twice the value obtained using KOH electrolyte.  相似文献   

9.
In this work, we reported an asymmetric supercapacitor in which active carbon (AC) was used as a positive electrode and carbon-coated LiTi2(PO4)3 as a negative electrode in 1 M Li2SO4 aqueous electrolyte. The LiTi2(PO4)3/AC hybrid supercapacitor showed a sloping voltage profile from 0.3 to 1.5 V, at an average voltage near 0.9 V, and delivered a capacity of 30 mAh g−1 and an energy density of 27 Wh kg−1 based on the total weight of the active electrode materials. It exhibited a desirable profile and maintained over 85% of its initial energy density after 1000 cycles. The hybrid supercapacitor also exhibited an excellent rate capability, even at a power density of 1000 W kg−1, it had a specific energy 15 Wh kg−1 compared with 24 Wh kg−1 at the power density about 200 W kg−1.  相似文献   

10.
Coherent hydrous vanadium pentoxide (V2O5·nH2O)-carbon cryogel (CC) nanocomposites were synthesized by electrodeposition of vanadium pentoxide onto the porous carbon scaffold which was derived from resorcinol (R) and formaldehyde (F) organic hydrogels. As-fabricated nanocomposites were characterized by scanning electron microscopy (SEM), along with EDAX and nitrogen sorption isotherms which suggested vanadium pentoxide incorporated in the pores of carbon cryogels. The nanocomposites showed much improved discharge capacity and better cyclic stability as compared to hydrous vanadium pentoxide films deposited on platinum foil. The discharge capacity of the nanocomposites reached 280 mAh g−1 based on the mass of the vandium pentoxide at a current density of 100 mA g−1 and it possessed good cycle stability at different discharge rates. The results demonstrated that electrochemical performances, such as specific discharge capacitance and reversibility of the composite electrode, could be greatly enhanced by the introduction of carbon cryogels (CCs) scaffold with three-dimensionally interconnected porous structure in which V2O5·nH2O homogeneously dispersed.  相似文献   

11.
This is the first report about supercapacitive performance of hybrid film of manganese dioxide (MnO2) and polyaniline (PANI) in an organic electrolyte (1.0 M LiClO4 in acetonitrile). In this work, a high surface area and conductivity of active carbon (AC) electrode is used as a substrate for PANI/MnO2 film electro-codeposition. The redox properties of the coated PANI/MnO2 thin film exhibit ideal capacitive behaviour in 1 M LiClO4/AN. The specific capacitance (SC) of PANI/MnO2 hybrid film is as high as 1292 F g−1 and maintains about 82% of the initial capacitance after 1500 cycles at a current density of 4.0 mA cm−2, and the coulombic efficiency (η) is higher than 95%. An asymmetric capacitor has been developed with the PANI/MnO2/AC positive and pure AC negative electrodes, which is able to deliver a specific energy as high as 61 Wh kg−1 at a specific power of 172 W kg−1 in the range of 0-2.0 V. These results indicate that the organic electrolyte is a promising candidate for PANI/MnO2 material application in supercapacitors.  相似文献   

12.
Hierarchical porous multi-phase Ni-Zn-Co oxide/hydroxide is synthesized by using metal-organic framework-5 (MOF-5) as the template. Hierarchical porous carbon is obtained by the facile direct decomposition of the MOF-5 framework with phenolic resin. The structures and textures are characterized by X-ray diffraction, high-resolution transmission electron microscopy, scanning electron microscopy, and nitrogen sorption at 77 K. An asymmetric capacitor incorporating the Ni-Zn-Co oxide/hydroxide as the positive electrode and the porous carbon as the negative electrode is fabricated. A maximum energy density of 41.65 Wh kg−1 is obtained, which outperforms many other available asymmetric capacitors. The asymmetric capacitor also shows a good high-rate performance, possessing an energy density of 16.62 Wh kg−1 at the power density of about 2900 W kg−1.  相似文献   

13.
Laser-printed thick-film electrodes (LiCoO2 cathode and carbon anode) are deposited onto metallic current collectors for fabricating Li-ion microbatteries. These microbatteries demonstrate a significantly higher discharge capacity, power and energy densities than those made by sputter-deposited thin-film techniques. This increased performance is attributed to the porous structure of the laser-printed electrodes, which allows improved ionic and electronic transport through the thick electrodes (∼100 μm) without a significant increase in internal resistance. These laser-printed electrodes are separated by a laser-cut porous membrane impregnated with a gel polymer electrolyte (GPE) in order to build mm-size scale solid-state rechargeable Li-ion microbatteries (LiCoO2/GPE/carbon). The resulting packaged microbatteries exhibit a power density of ∼38 mW cm−2 with a discharge capacity of ∼102 μAh cm−2 at a high discharge rate of 10 mA cm−2. The laser-printed microbatteries also exhibit discharge capacities in excess of 2500 μAh cm−2 at a current density of 100 μA cm−2. This is over an order of magnitude higher than that observed for sputter-deposited thin-film microbatteries (∼160 μAh cm−2).  相似文献   

14.
The electrochromic and photocatalytic properties of vanadium-doped tungsten trioxide thin films prepared at room temperature (300 K) by the electron beam evaporation technique are reported in this paper. The vanadium to tungsten ratio (V/W) in these films are 0.003, 0.019, 0.029 and 0.047. The optical band gap of the vanadium-doped tungsten oxide (WO3) thin film initially increases from 3.16 to 3.28 eV for V/W ratio 0.003 then decreases to 3.15 eV for V/W ratio 0.047. These vanadium-doped films switch between neutral gray and transparent states. The coloration efficiency (CE) decreases from 82 cm2 C−1 (pure WO3) to 27 cm2 C−1 for the film containing V/W ratio 0.047. The photocatalytic activity has enhanced with vanadium doping and maximum activity of 15% (percentage change in optical density of methylene blue due to photo degradation) has been observed for the film containing V/W ratio of 0.019. The Kelvin probe measurements show that the work function of pure WO3 films is 4.07 eV and vanadium doping initially increases the work function to 4.19 eV for V/W ratio 0.019 and then decreases it to 3.97 eV for film with V/W ratio 0.047.  相似文献   

15.
A simple and scalable method is reported for fabricating a porosity-controlled carbon nanofibers with a skin-core texture by electrospinning a selected blend of polymer solutions. Simple thermal treatment of the electrospun nanofibers from solution blends of various compositions creates suitable ultramicropores on the surface of carbon nanofibers that can accommodate many ions, removing the need for an activation step. The intrinsic properties of the electrode (e.g., nanometre-size diameter, high specific surface area, narrow pore size distribution, tuneable porosity, shallow pore depth, and good ionic accessibility) enable construction of supercapacitors with large specific capacitance (130.7 F g−1), high power (100 kW kg−1), and energy density (15.0 Wh kg−1).  相似文献   

16.
A novel doped activated carbon has been prepared from H2SO4-doped polyaniline which is prepared by the oxypolymerization of aniline. The morphology, surface chemical composition and surface area of the carbon have been investigated by scanning electron microscope, X-ray photoelectron spectroscopy and Brunaner-Emmett-Teller measurement, respectively. Electrochemical properties of the doped activated carbon have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol l−1 KOH. The specific capacitance of the carbon is as high as 235 F g−1, the specific capacitance hardly decreases at a high current density 11 A g−1 after 10,000 cycles, which indicates that the carbon possesses excellent cycle durability and may be a promising candidate for supercapacitors.  相似文献   

17.
Highly active and stable carbon composite catalysts for oxygen reduction in PEM fuel cells were developed through the high-temperature pyrolysis of Co–Fe–N chelate complex, followed by the chemical post-treatment. A metal-free carbon catalyst was used as the support. The carbon composite catalyst showed an onset potential for oxygen reduction as high as 0.87 V (NHE) in H2SO4 solution, and generated less than 1% H2O2. The PEM fuel cell exhibited a current density as high as 0.27 A cm−2 at 0.6 V and 2.3 A cm−2 at 0.2 V for a catalyst loading of 6.0 mg cm−2. No significant performance degradation was observed over 480 h of continuous fuel cell operation with 2 mg cm−2 catalyst under a load of 200 mA cm−2 as evidenced by a resulting cell voltage of 0.32 V with a voltage decay rate of 80 μV h−1. Materials characterization studies indicated that the metal–nitrogen chelate complexes decompose at high pyrolysis temperatures above 800 °C, resulting in the formation of the metallic species. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface doped with nitrogen groups is catalytically active for oxygen reduction.  相似文献   

18.
In this work, nonaqueous electrolyte-based Li-air batteries with an O2-selective membrane have been developed for operation in ambient air of 20-30% relative humidity (RH). The O2 gas is continuously supplied through a membrane barrier layer at the interface of the cathode and ambient air. The membrane allows O2 to permeate through while blocking moisture. Such membranes can be prepared by loading O2-selective silicone oils into porous supports such as porous metal sheets and Teflon (PTFE) films. It was found that the silicone oil of high viscosity shows better performance. The immobilized silicone oil membrane in the porous PTFE film enabled the Li-air batteries with carbon black air electrodes to operate in ambient air (at 20% RH) for 16.3 days with a specific capacity of 789 mAh g−1 carbon and a specific energy of 2182 Wh kg−1 carbon. Its performance is much better than a reference battery assembled with a commercial, porous PTFE diffusion membranes as the moisture barrier layer on the cathode, which only had a discharge time of 5.5 days corresponding to a specific capacity of 267 mAh g−1 carbon and a specific energy of 704 Wh kg−1 carbon. The Li-air battery with the present selective membrane barrier layer even showed better performance in ambient air operation (20% RH) than the reference battery tested in the dry air box (<1% RH).  相似文献   

19.
Anode made of multiwalled carbon nanotubes (MWNT) results in enhancement of exchange current density compared to graphite anode in a conventional alkaline water electrolysis cell. The hydrogen production rate with the nanotubes was measured to be ∼375 lh−1 m−2 at pH ∼ 14 which was nearly double of that obtained from traditional graphitic carbon electrodes at the same overpotential. This effect appears to be caused by defects on the nanotubes which reduces the energy barrier for the dissociation of OH into oxygen at the anode.  相似文献   

20.
N-Methyl-N-propylpiperidinium bis(trifluoromethanesulphonyl)imide (MePrPipNTf2), as well as its mixture with a molecular liquid acetonitrile (MeCN) were tested as electrolytes for carbon-double-layer capacitors. The conductivity of the MePrPipNTf2 neat ionic liquid is at the level of 1.5 mS cm−1, while the corresponding value for the mixture (48 wt.% MePrPipNTf2 + 52 wt.% of MeCN) is ca. 40 mS cm−1 (both recorded at 25 °C). The electrochemical stability of the electrolyte (both neat ionic liquid, as well as its mixture with acetonitrile), detected at the glassy carbon electrode, was as broad as 5.7 V. However, the tested capacitors with activated carbon as the active electrode material show considerable lower stability, reduced to ca. 3.7 V. The specific capacity estimated from both cyclic voltammetry and charging/discharging experiments was ca. 140 F g−1, and after ca. 700 cycles, decreased to ca. 100 F g−1. The effect of the loss of the part of initial specific capacity is probably due to the loss of Faradaic pseudo-capacity. The specific energy of the activated carbon in the tested devices was at the level of 240 kJ kg−1 while the specific power density was ca. 25 kW kg−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号