首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
断路器分闸产生的过电压是引起干式空心并联电抗器匝间绝缘老化、击穿的重要因素之一。为抑制过电压对35 kV并联电抗器造成的损害,设计了一种阻容式过电压抑制装置,通过理论计算选择出抑制装置的电容和电阻值。采用MATLAB软件对不同截流电流值下过电压抑制装置的保护效果进行了仿真验证,仿真结果表明可有效抑制过电压;通过可靠性试验验证了装置样机运行的安全稳定性。  相似文献   

2.
为了提高特高压输电系统的可靠性和安全性,利用EMTP建立了1 000 kV典型输电系统的仿真模型。分别针对工频、操作和雷电过电压情况下中性点小电抗的过电压进行了计算分析,研究了并联电抗器和金属氧化物避雷器对过电压的抑制效果,重点分析了并联电抗器中性点小电抗的过电压,并对其绝缘水平进行了核算。实验发现:并联电抗器可有效抑制线路以及小电抗上的工频过电压,避雷器可以有效限制操作过电压以及三相重合闸过程中出现严重的过电压。中性点避雷器的额定电压推荐选取180 kV或192 kV,绝缘水平可选为:雷电冲击耐受电压要求值为550 kV,短时工频耐受电压要求值为230 kV。  相似文献   

3.
近年来,35kV电网中真空断路器开断并联电抗器时发生了多起事故,而干式空心电抗器故障多数是匝间绝缘缺陷造成匝间短路引发的,因此干式空心电抗器匝间绝缘问题已经越来越被重视。由真空断路器分闸引起干式空心并联电抗器过电压对电抗器的匝间绝缘老化起到了至关重要的作用。基于上海某变电站实际电气主接线,构建投切35kV并联电抗器单相模型以及三相模型,并且考虑到三相模型中另外两相的工频电源对首开相产生的影响,计算由断路器分闸产生的最大截流过电压达到7.3(标么值)而同时开断三相电抗器时产生的最大截留过电压高达8.6(标么值)。  相似文献   

4.
取消750kV线路A1S断路器和GIS断路器合闸电阻可节省费用,并提高断路器运行可靠性。研究了取消750kV交流输电线路断路器合闸电阻的可行性。提出了以线路的闪络率及避雷器能量作为取消750kV线路断路器合闸电阻的判据。介绍了线路闪络率的计算条件和方法,给出了取消合闸电阻后的750kV线路过电压水平和线路的绝缘水平以及几种限制过电压措施。  相似文献   

5.
结合电网的实际运行情况,对110 kV不接地变压器间隙保护进行了分析,提出了110 kV变压器中性点的保护配置方案,并分析了采用间隙和避雷器并联保护时,避雷器对中性点工频暂态过电压的限制作用.  相似文献   

6.
介绍了宝鸡-乾县750kV同杆双回交流输电线路、同塔双回线路内过电压的计算结果。选择了高抗中性点小电抗和线路接地刀闸的参数。提出了线路侧避雷器的额定电压选为600kV,以降低线路侧操作和雷电过电压的保护水平,减少避雷器备品和备件的建议。探讨了取消750kV同杆双回交流输电线路断路器合闸电阻的可行性。  相似文献   

7.
在35kV电力系统中采用真空断路器来开断电抗器引起复燃过电压,给电抗器的匝间绝缘造成破坏。基于上海某变电站实际电气主接线,构建投切35kV并联电抗器单相模型以及三相模型,计算出首开相产生的复燃过电压幅值为3.0(标么值)。根据后开相的过电压产生机理,计算出非工频电流过零相产生的过电压幅值为13.0(标么值),而在前两相均产生复燃的情况下,最后相产生的过电压幅值为16.6(标么值)。  相似文献   

8.
在500 kV线路的系统操作过电压超过相关规范规定要求时,必须对其采取限制措施以保证供电系统的安全可靠性。分析操作过电压的限制措施、氧化性避雷器电位分布,结合工程实例分析采取氧化性避雷器限制措施前后的过电压变化以及避雷器参数的取值;同时验证在不采取限制措施情况下输电线路绝缘设计是否满足要求。结果表明,这2种不同的操作过电压处理方式,均可作为解决操作过电压水平超过要求值时的解决方案。  相似文献   

9.
冯文华  魏〓星 《水电能源科学》2012,30(10):143-145,216
为分析干式平波电抗器实际运行中的特性,以云广特高压直流输电工程为例,通过试验与事故分析得出,串联的2台干式空心平波电抗器带并联避雷器和不带并联避雷器运行时,在雷电和操作波冲击下电压分布不同;中性母线和高压母线上分别安置干式平波电抗器可降低800kV换流变压器操作冲击绝缘水平;由于干式平波电抗器是储能元件,给中性母线上的高速开关断开造成困难,需合理地选择中性线上避雷器参数。  相似文献   

10.
全线同杆双回线一侧并联电抗器运行方式在超高压线路中颇为常见。并联电抗器吸收电网容性无功的同时,也有可能与线路的感应电容配合形成谐振,在未并联电抗器线路带电运行,带有并联电抗器线路停运检修的状态下,线路相间耦合电容作用使得停运线路产生感应电压,此时如果线路高抗和线路参数匹配,符合谐振条件,那么就会在停运线路上产生很高的谐振过电压损坏电力设备。本文通过对初步感应电压电流、工频谐振以及潜供电流恢复电压的计算分析同杆双回线路强耦合所产生的高压极其破坏性,旨在避免500kV同杆双回高压线路强耦合谐振导致的事故发生。  相似文献   

11.
依托南方主网与海南电网联网工程,运用ATP-EMTP电磁暂态分析软件,建立了500 kV架空线路与海底电缆线路的雷电侵入波仿真计算模型,采用修正后的电气几何模型法来计算最大绕击雷电流,采用先导发展法作为绝缘子串和空气间隙放电闪络判据,计算架空线路遭受绕击和反击时,无避雷器和有避雷器2种情况下海底电缆主绝缘上所承受的雷电过电压,据此校核海底电缆雷电冲击绝缘水平及避雷器配置的合理性。研究结果表明,合理配置避雷器大大降低了雷电过电压对海缆的影响,在架空线路遭受绕击和-250 kA雷电流反击时,海底电缆最大雷电过电压分别为-916 kV和-923 kV,海底电缆绝缘裕度和避雷器配置满足防雷要求。  相似文献   

12.
为向后续750kV超高压工程建设和百万伏级特高压工程建设提供参考和借鉴,有必要对750kV示范工程建设经验进行总结和分析。简述了国家电网公司750kV输变电示范工程小系统试验中的零起升流和零起升压试验及结果.对750kV官亭站和兰州东站主变零起升流试验和零起升压试验结果进行了分析,内容包括:750kV主变短路阻抗,主变空载伏安特性,氧化锌避雷器泄漏电流和750kV高抗伏安特性测试以及试验过程中二次同路校核,并与设计值进行了对比,给出了试验结论。  相似文献   

13.
500kV变电站一旦发生雷害事故,将直接影响整个电力系统的安全可靠运行,雷电侵入波沿线路传入变电站会引起站内电气设备出现过电压,严重威胁到设备的绝缘水平。为确保变电站内电气设备能在避雷器保护范围内安全运行,基于岩滩水电站扩建工程500kV变电站新的接线方式,建立了水电站设备数值模型,并采用电磁暂态分析程序ATP/EMTP对设备过电压进行了仿真计算。结果表明,岩滩水电站变电站进线段杆塔绝缘性强;500kV线路绕击侵入波是重点防范对象;工频电压对500kV变电站的雷电侵入波过电压影响显著。  相似文献   

14.
介绍了雷电过电压的分类,分析了10kV和35kV配电线路防雷技术的特点,提出了相应的防雷措施。实践应用的结果表明,10kV配电线路应重点考虑感应雷击过电压的防护,35kV配电线路则应同时考虑感应雷击和直击雷的防护。  相似文献   

15.
10 kV集合式并联电容器的选择与应用   总被引:1,自引:0,他引:1  
介绍了新疆哈密地区巴里坤县110kV变电所安装的集合式并联电容器成套装置,对无功补偿容量的确定、集合式并联电容器及其配套设备型式的选择作了说明,以及运行过程中可能出现的涌流、过电压、电网谐波放大问题进行了分析,对变电站的无功补偿装置提出建议:按照变电站的无功补偿装置,仅补偿站内无功损耗的原则来确定变电站无功补偿容量;采用可调容集合式并联电容器配套的高压可调容智能综合控制器,该装置可根据变电站的功率因数和电压水平来调节有载调压变压器分接头和自动投切集合式并联电容器。  相似文献   

16.
2011年以来,国内发生了多次风电机组大规模脱网事故。大多数的事故与风电场35kV系统运行技术及运行方式、设备选型有关联。研究风电场35kV系统接线结构、风电场实际运行情况、技术手段限制等因素,参考目前较为成熟的先进技术,从系统设计、设备选型、运行方式等方面提出了优化方案,大幅度提高了风电场35kV系统运行的可靠性。  相似文献   

17.
雷击跳闸是输电线路总故障跳闸的主要原因,安装线路避雷器是防止线路雷击跳闸的有效措施。为降低线路雷击跳闸率,提高线路安全性,利用电磁暂态计算程序(ATP-EMTP),采用绝缘子串和空气间隙先导法、修正电气几何法对一条500 kV单回线路未加装线路避雷器时的反击性能和绕击性能进行了仿真建模计算,对影响因素进行了分析,提出了避雷器的安装原则,对不同安装方案进行了对比研究。研究表明,线路避雷器可以有效提升线路的防雷性能,对水平布置的单回线路,防止反击时避雷器应重点安装在较高呼高、冲击接地电阻较大的杆塔两边相导线上,防止绕击时应重点安装在较高呼高、较大地面倾角时的下坡侧边相导线上。研究成果有助于指导线路避雷器安装的选点和设计工作。  相似文献   

18.
某抽水蓄能电站500kV GIS隔离开关经检测存在操作过电压的风险,本文对造成隔离开关操作过电压的原因进行了分析,采用改变隔离开关触头结构等措施降低发生操作过电压的可能性,进一步介绍了隔离开关改造的过程以及注意事项,隔离开关经改造完成后运行情况良好,可为其他类似设备运维提供相关参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号