首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
NF-kappaB activation in response to UV irradiation of HeLa cells or of primary human skin fibroblasts occurs with two overlapping kinetics but totally different mechanisms. Although both mechanisms involve induced dissociation of NF-kappaB from IkappaBalpha and degradation of IkappaBalpha, targeting for degradation and signaling are different. Early IkappaBalpha degradation at 30 min to approximately 6 h is not initiated by UV-induced DNA damage. It does not require IkappaB kinase (IKK), as shown by introduction of a dominant-negative kinase subunit, and does not depend on the presence of the phosphorylatable substrate, IkappaBalpha, carrying serines at positions 32 and 36. Induced IkappaBalpha degradation requires, however, intact N- (positions 1-36) and C-terminal (positions 277-287) sequences. IkappaB degradation and NF-kappaB activation at late time points, 15-20 h after UV irradiation, is mediated through DNA damage-induced cleavage of IL-1alpha precursor, release of IL-1alpha and autocrine/paracrine action of IL-1alpha. Late-induced IkappaBalpha requires the presence of Ser32 and Ser36. The late mechanism indicates the existence of signal transfer from photoproducts in the nucleus to the cytoplasm. The release of the 'alarmone' IL-1alpha may account for some of the systemic effects of sunlight exposure.  相似文献   

4.
5.
6.
7.
The inactivation of the prototype NF-kappaB inhibitor, IkappaBalpha, occurs through a series of ordered processes including phosphorylation, ubiquitin conjugation, and proteasome-mediated degradation. We identify valosin-containing protein (VCP), an AAA (ATPases associated with a variety of cellular activities) family member, that co-precipitates with IkappaBalpha immune complexes. The ubiquitinated IkappaBalpha conjugates readily associate with VCP both in vivo and in vitro, and this complex appears dissociated from NF-kappaB. In ultracentrifugation analysis, physically associated VCP and ubiquitinated IkappaBalpha complexes sediment in the 19 S fractions, while the unmodified IkappaBalpha sediments in the 4.5 S fractions deficient in VCP. Phosphorylation and ubiquitination of IkappaBalpha are critical for VCP binding, which in turn is necessary but not sufficient for IkappaBalpha degradation; while the N-terminal domain of IkappaBalpha is required in all three reactions, both N- and C-terminal domains are required in degradation. Further, VCP co-purifies with the 26 S proteasome on two-dimensional gels and co-immunoprecipitates with subunits of the 26 S proteasome. Our results suggest that VCP may provide a physical and functional link between IkappaBalpha and the 26 S proteasome and play an important role in the proteasome-mediated degradation of IkappaBalpha.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Although nitric oxide (NO) and antioxidants inhibit adhesion molecule expression, their inhibitory effects on nuclear factor kappaB (NF-kappaB) activation may differ. The NO donors, but not 8-bromo-cGMP, decreased tumor necrosis factor alpha (TNF-alpha)-induced VCAM-1, ICAM-1, and E-selectin expression by 11-70%. In contrast, NAC completely abolished VCAM-1 and E-selectin expression and decreased ICAM-1 expression by 56%. Gel shift assays demonstrate that NF-kappaB activation was inhibited by both NO and antioxidants. The activation of NF-kappaB involves the phosphorylation and degradation of its cytoplasmic inhibitor IkappaB-alpha by 26S proteasomes. The 26S proteasome inhibitor MG132 prevented the degradation of phosphorylated IkappaB-alpha. NAC inhibited IkappaB kinase (IKK) activity and prevented IkappaB-alpha phosphorylation and degradation. In contrast, NO did not inhibit IKK activity, IkappaB-alpha phosphorylation, or IkappaB-alpha degradation. However, NO, but not antioxidants, induced IkappaB-alpha promoter activity. The inhibitory effects of NO on adhesion molecule expression, therefore, differs from that of antioxidants in terms of the mechanism by which NF-kappaB is inactivated.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号