首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Since 1987, the dosimetry service of the Netherlands Energy Research Foundation (ECN) has been certified by the Dutch government to perform personal dosimetry, using thermoluminescence dosemeters (TLDs). Performing neutron personal dosimetry requires a rather large investment in readers, TLDs and personnel to operate the service. About 800 persons are subjected to routine neutron monitoring in The Netherlands and their annual neutron doses are a relatively small fraction (less than 10%) of the annual Hp(10). In general, the measured neutron dose values are low (on average 93% of the users receive an annual neutron dose <0.2 mSv). The collective annual (neutron) dose has tended to decrease since 1992, but incidentally high doses have been observed. Leaving these incidents out, the average collective annual neutron doses for the different users of neutron sources are about the same.  相似文献   

2.
Measurement of the personal dose equivalent rates for neutrons is a difficult task because available dosemeters do not provide the required energy response and sensitivity. Furthermore, the available wide calibration spectra recommended by the International Standard Organisation does not reproduce adequately the spectra encountered in practical situations of the nuclear industry. There is a real necessity to characterise the radiation field, in which workers can be exposed, and to calibrate personal dosemeters in order to determine the dose equivalent in these installations. For this reason, we measure the neutron spectrum with our Bonner sphere system and we fold this spectrum with energy-dependent fluence-to-dose conversion coefficients to obtain the reference dose equivalent rate. This reference value is then compared with the personal dosemeter reading to determine a field-specific correction factor. In this paper, we present the values of this field-specific correction factor for etched track and albedo thermoluminescence dosemeters at three measurement locations inside the containment building of the Vandellòs II nuclear power plant. We have found that assigning to each personal dosemeter the mean value of the field-specific correction factors of the three measurement locations, allows the evaluation of neutron personal dose equivalent rate with a relative uncertainty of approximately 25 and 15% for the PADC and albedo dosemeters, respectively.  相似文献   

3.
Superheated emulsions being inexpensive, easy to fabricate, and having tissue equivalent composition make them as one of the popular neutron dosemeters. One more advantage is that they can be made insensitive to gamma rays by the choice of the sensitive liquid. It is observed that the response of commercially available bubble detector to neutron decreases above 20 MeV while its response is roughly flat in the 0.1-15 MeV region. This restricts its application as a dosemeter to high-energy neutrons. The response of bubble detector from Bubble Technology Industries, has been observed by using Pb-breeder for high-energy neutrons from different facilities in Japan. It is observed that 2-3 cm Pb-breeder is effective in increasing the response of the detector to the nominal value. Theoretical calculation using MCNPX code indicates an increase in neutrons in the energy range of 0.1-10 MeV with Pb-breeder. The present work indicates the possibility of using the bubble detector as a dosemeter to high-energy neutron using a Pb-breeder of proper thickness.  相似文献   

4.
The GSF-Personal Monitoring Service uses the TLD albedo dosemeter as standard neutron personal dosemeter. Due to its low sensitivity for fast neutrons however, it is generally not recommended for workplaces at high-energy accelerators. Test measurements with the albedo dosemeter were performed at the accelerator laboratories of GSI in Darmstadt and DESY in Hamburg to reconsider this hypothesis. It revealed that the albedo dosemeter can also be used as personal dosemeter at these workplaces, because at all measurement locations a significant part of neutrons with lower energies could be found, which were produced by scattering at walls or the ground.  相似文献   

5.
For neutron dosimetry in the radiation environment surrounding nuclear facilities, two types of environmental neutron dosemeters, the high-sensitivity rem counter and the high-sensitivity multi-moderator, the so-called Bonner ball, have been developed and the former is commercially available from Fuji Electric Co. By using these detectors, the cosmic ray neutrons at sea level have been sequentially measured for about 3 y to investigate the time variation of neutron spectrum and ambient dose equivalent influenced by cosmic and terrestrial effects. Our Bonner ball has also been selected as the neutron detector in the International Space Station and has already been used to measure neutrons in the US experimental module. The real time wide-range personal neutron dosemeter which uses two silicon semiconductor detectors has been developed for personal dosimetry and is commercially available from Fuji Electric Co. This dosemeter has good characteristics, fitted to the fluence-to-dose conversion factor in the energy range from thermal energies to several tens of mega-electron-volts and is now widely used in various nuclear facilities.  相似文献   

6.
The response of neutron dosemeters may be determined directly from measurements, provided a sufficiently large number of measurements in monoenergetic neutron fields covering the entire energy range of interest is available. In practice this is not feasible due to the lack of monoenergetic neutron fields in the thermal and intermediate energy region (i.e. energies <24 keV). To deal with this difficulty, we have developed a method which can take into account additional information about the response of the dosemeter. Our analysis makes use of two types of data, measurements made using monoenergetic neutron beams and measurements made in neutron fields with broad energy distributions. The dosemeter responses are described using a parametrised model, based on a minimum of assumptions: that they should fit the data within experimental uncertainties, and that they should remain close to a simple interpolation of the monoenergetic and thermal neutron field data.  相似文献   

7.
The European Commission recently sponsored an international research and development project, in which three 'active' personal neutron dosemeters were developed. Comparative irradiation experiments showed good results with respect to sensitivity and energy dependence of the response.  相似文献   

8.
Al(2)O(3):Mg,Y thermoluminescence (TL) dosemeters were used to measure photon and fast neutron doses in a fast neutron beam recently implemented at the Portuguese Research Reactor, Nuclear and Technological Institute, Portugal. The activation of Al(2)O(3):Mg,Y by fast neutrons provides information about the fast neutron component by measuring the activity of the reaction products and the self-induced TL signal. Additionally, the first TL reading after irradiation determines the photon dose. The elemental composition of the dosemeters was determined by instrumental neutron activation analysis and by particle induced X-ray emission. Results demonstrate that Al(2)O(3):Mg,Y is an adequate material to discriminate photon and fast neutron fields for reactor dosimetry purposes.  相似文献   

9.
Over the past few years, the Institute for Radiation Protection and Nuclear Safety (IRSN) has been studying a personal electronic neutron dosemeter and an ambient electronic neutron dosemeter based on experimental microdosimetric principles using low pressure proportional counters. The results obtained in 2000 and in 2001 with the cylindrical tissue-equivalent proportional counter developed for use in radiation protection and filled with a low pressure tissue-equivalent gas (propane based) are presented here.  相似文献   

10.
When a charged-particle track intercepts the chromatin fibre in DNA of mammalian cells, clustered damage is induced depending on the DNA conformation, local environment and track structure. Intra-track correlated DNA damage may have a higher probability of being mis-repaired or left un-repaired. Fragment size-distributions of DNA double strand breaks (DSBs) induced in primary human fibroblasts by 240 kVp X rays and 238Pu alpha particles (110 keV.micron-1) were resolved using pulsed-field gel electrophoresis (PFGE). By monitoring DSB rejoining kinetics and changes in the fragment size distribution with repair time, the relevance of spatial association of DSBs in determining rejoining kinetics was investigated. Rejoining kinetics appeared bi-phasic and independent of the size of the DNA fragments for both radiation qualities, with high LET radiation-induced DSBs repairing more slowly. Results suggest that local complexity of individual DSBs, rather than spatial association with other breaks is more significant in the determination of rejoining kinetics.  相似文献   

11.
The authors carried out an operational study that compared the use of TLD albedo dosemeters and solid state nuclear tracks detector in plutonium environments of Japan Nuclear Cycle Development Institute, Tokai Works. A selected group of workers engaged in the fabrication process of MOX (Plutonium-Uranium mixed oxide) fuel wore both TLD albedo dosemeters and solid state nuclear tracks detectors. The TL readings were generally proportional to the counted etch-pits, and thus the dose equivalent results obtained from TLD albedo dosemeter agreed with those from solid state nuclear tracks detector within a factor of 1.5. This result indicates that, in the workplaces of the MOX fuel plants, the neutron spectrum remained almost constant in terms of time and space, and the appropriate range of field-specific correction with spectrum variations was small in albedo dosimetry.  相似文献   

12.
In order to evaluate the neutron doses around nuclear fissile objects, a comparative study has been made on several neutron dosemeters: bubble dosemeters, etched-track detectors (CR-39) and 3He-filled proportional counters used as dose-rate meters. The measurements were made on the ambient and the personal dose equivalents H*(10) and Hp(10). Results showed that several bubble dosemeters should have been used due to a low reproducibility in the measurements. A strong correlation with the neutron energy was also found, with about a 30% underestimation of Hp(10) for neutrons from the PuBe source, and about a 9% overestimation for neutrons from the 252Cf source. Measurements of the nuclear fissile objects were made using the CR-39 and the dose-rate meters. The CR-39 led to an underestimation of 30% with respect to the neutron dose-rate meter measurements. In addition, the MCNP calculation code was used in the different configurations.  相似文献   

13.
Passive detectors, as albedo or track-etch, still dominate the field of neutron personal dosimetry, mainly due to their low-cost, high-reliability and elevated throughput. However, the recent appearance in the market of electronic personal dosemeters for neutrons presents a new option for personal dosimetry. In addition to passive detectors, electronic personal dosemeters necessitate correction factors, concerning their energy and angular response dependencies. This paper reports on the results of a method to evaluate personal dosemeters for workplace where neutrons are present. The approach here uses few instruments and does not necessitate a large mathematical workload. Qualitative information on the neutron energy spectrum is acquired using a simple spectrometer (Nprobe), reference values for H*(10) are derived from measurements with ambient detectors (Studsvik, Berthold and Harwell) and angular information is measured using personal dosemeters (electronic and bubbles dosemeters) disposed in different orientations on a slab phantom.  相似文献   

14.
The results of a study dealing with detection of neutrons in thermoluminescent (TL) photon radiation detectors, type TLD-500, based on an anion-defective corundum have been reported. The detection method uses the transformation of neutron radiation into gamma radiation arising when neutrons are captured by cadmium nuclei. A comparative analysis of the data obtained with the TL detectors and results of radiometric measurements suggested applicability of this method. A sensor with an optimal embodiment providing a relatively high sensitivity has been developed.  相似文献   

15.
The neutron dose-equivalent response of two commercially available electronic personal neutron dosemeters was studied in several laboratory-produced broad-spectrum neutron fields. Fluence-weighted mean energies ranged from 200 keV to 4 MeV; personal dose-equivalent rates ranged from 75 to 10 mSv h(-1); and angles of incidence were multidirectional, 0 degrees, 30 degrees and 60 degrees. Three of these fields have been shown previously to resemble ones found in CANDU (Canadian Deuterium Uranium is a registered trademark of the Atomic Energy of Canada Limited) power plant workplaces. Both dosemeters were found to perform reasonably well across the range of energy spectra and angles of incidence. One type of dosemeter displayed values of the personal dose equivalent that were, at worst, within a factor of approximately 2 of the reference values and, at best, within a few per cent of the reference values. The other type displayed values of the personal dose equivalent that were consistently within unity and 20% of the reference values. Although the radiological performance of one was found to be more accurate, this device was also found to be the less rugged of the two. Some of the data acquired in this work were compared with results previously published by others. There was consistency between these sets of data.  相似文献   

16.
17.
The recommendations and test requests for the dose equivalent response of personal neutron dosemeters formulated by the new International Standard IEC 61526 are summarised. In particular, IEC 61526 allows the use of broad fields if dosemeters do not fulfil the hard requirements using monoenergetic neutrons. Some broad fields which can work as a replacement field using ISO sources ((252)Cf, (252)Cf (D(2)O mod.), (241)Am-Be) and simulated workplace fields (CANEL and SIGMA) are described. This work shows the results of recent measurements of the personal dose equivalent response for the dosemeters Thermo Electron EPD-N2, Aloka PDM-313 and the prototype dosemeter PTB DOS-2002, and discusses their compliance with respect to the new IEC 61526 standard.  相似文献   

18.
Radiation workers engaging in the fabrication of MOX fuels at the Japan Atomic Energy Agency-Nuclear Fuel Cycle Engineering Laboratories are exposed to neutrons. Accordingly, thermoluminescent albedo dosemeters (TLADs) are used for individual neutron dosimetry. Because dose estimation using TLADs is susceptible to variation of the neutron energy spectrum, the authors have provided TLADs incorporating solid-state nuclear tracks detectors (SSNTDs) to selected workers who are routinely exposed to neutrons and have continued analysis of the relationship between the SSNTD and the TLAD (T/R(f)) over the past 6 y from 2004 to 2009. Consequently, the T/R(f) value in each year was less than the data during 1991-1993, although the neutron spectra had not changed since then. This decrease of the T/R(f) implies that the ratio of operation time nearby gloveboxes and the total work time has decreased.  相似文献   

19.
For the altitude range and inclination of the International Space Station (ISS), secondary neutrons can be a major contributor to dose equivalent inside a spacecraft. The exact proportion is very dependent on the amount of shielding of the primary galactic cosmic radiation and trapped particles, but is likely to lie in the range of 10-50%. Personal neutron dosemeters of simple design, processed using simple techniques developed for personal dosimetry, may be used to estimate this neutron component.  相似文献   

20.
In neutron reference radiation fields, the conventional true value of the personal dose equivalent, H(p)(10), is derived from the spectral neutron fluence and recommended conversion coefficients. This procedure requires the phantom on which the personal dosemeter is mounted to be irradiated with a broad and parallel beam. In many practical situations, the change of the neutron fluence and/or the energy distribution over the surface of the phantom may not be neglected. For a selection of typical irradiation conditions in neutron reference radiation fields, the influence of this effect has been analysed using numerical methods. A further problem, which is of relevance for the calibration of dosemeters measuring both the neutron and the photon component of mixed fields, is the 'double counting' of the dose equivalent due to neutron-induced photons. The relevance of this conceptual problem for calibrations in mixed-field dosimetry was analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号