首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants defend themselves against herbivores and pathogens with a suite of morphological, phenological, biochemical, and biotic defenses, each of which is presumably costly. The best studied are allocation costs that involve trade-offs in investment of resources to defense versus other plant functions. Decreases in growth or reproductive effort are the costs most often associated with antiherbivore defenses, but trade-offs among different defenses may also occur within a single plant species. We examined trade-offs among defenses in closely related tropical rain forest shrubs (Piper cenocladum, P. imperiale, and P. melanocladum) that possess different combinations of three types of defense: ant mutualists, secondary compounds, and leaf toughness. We also examined the effectiveness of different defenses and suites of defenses against the most abundant generalist and specialist Piper herbivores. For all species examined, leaf toughness was the most effective defense, with the toughest species, P. melanocladum, receiving the lowest incidence of total herbivory, and the least tough species, P. imperiale, receiving the highest incidence. Although variation in toughness within each species was substantial, there were no intraspecific relationships between toughness and herbivory. In other Piper studies, chemical and biotic defenses had strong intraspecific negative correlations with herbivory. A wide variety of defensive mechanisms was quantified in the three Piper species studied, ranging from low concentrations of chemical defenses in P. imperiale to a complex suite of defenses in P. cenocladum that includes ant mutualists, secondary metabolites, and moderate toughness. Ecological costs were evident for the array of defensive mechanisms within these Piper species, and the differences in defensive strategies among species may represent evolutionary trade-offs between costly defenses.  相似文献   

2.
Chemical Defenses of Freshwater Macrophytes Against Crayfish Herbivory   总被引:6,自引:0,他引:6  
We measured feeding preferences of the crayfish Procambarus clarkii for fresh tissue from four species of freshwater macrophytes (Habenaria repens, Saururus cernuus, Ceratophyllum demersum and Typha angustifolia). We then determined the role of plant chemical defenses in generating these preferences by incorporating crude aqueous and organic extracts from each species into palatable foods and comparing feeding on these foods to feeding on control foods lacking these extracts. Tissue toughness, dry mass and ash-free mass per volume, and percentages of carbon, nitrogen, and phenolics were also measured for each of the four macrophytes. Although it had a low nutritional value, Ceratophyllum was the preferred food when it was offered as fresh tissue; it did not produce a chemically deterrent extract. The lipophilic crude extract from Typha significantly deterred crayfish feeding, but this highly nutritious plant was preferred when offered in an agar-based diet lacking structural defenses. Habenaria and Saururus were low preference foods that did not appear to be structurally defended; each species contained both lipophilic and water-soluble extracts that significantly deterred feeding. Fractionation of the lipophilic crude extract from Saururus indicated the presence of at least three deterrent compounds. From the orchid Habenaria, we isolated and identified a novel bis-p-hydroxybenzyl-2-alkyl-2-hydroxysuccinoate metabolite, habenariol, that appeared to explain most of the feeding deterrent activity present in the lipophilic extract of this species. The concentration of the metabolite in frozen collections of this plant doubled if we allowed the material to thaw before placing it in extraction solvents.  相似文献   

3.
This study compared algal palatability and chemical defenses from subtropical green algae that may use different types of defense systems that deter feeding by the rock-boring sea urchin Echinometra lucunter. The potential defense systems present include (1) the terpenoid caulerpenyne and its activated products from Caulerpa spp., and (2) dimethylsulfoniopropionate (DMSP)-related defenses in Ulva spp. Secondary metabolites from these chemical groups have been shown to deter feeding by various marine herbivores, including tropical and temperate sea urchins. Live algal multiple-choice feeding assays and assays incorporating algal extracts or isolated metabolites into an artificial diet were conducted. Several green algae, including Ulva lactuca, Caulerpa prolifera, and Cladophora sp., were unpalatable. Nonpolar extracts from U. lactuca deterred feeding, whereas nonpolar extracts from C. prolifera had no effect on feeding. Polar extracts from both species stimulated feeding. Caulerpenyne deterred feeding at approximately 4% dry mass; however, dimethyl sulfide and acrylic acid had no effect at natural and elevated concentrations. E. lucunter is more tolerant than other sea urchins to DMSP-related defenses and less tolerant to caulerpenyne than many reef fish. Understanding the chemical defenses of the algae tested in this study is important because they, and related species, frequently are invasive or form blooms, and can significantly modify marine ecosystems.  相似文献   

4.
The evolution of increased competitive ability (EICA) hypothesis predicts that invasive plant species may escape their specialized natural enemies in their introduced range and subsequently evolve with a decrease in investment in anti-herbivore chemical defenses relative to native conspecifics. We compared the chemical profile of 10 populations of US native and 20 populations of European invasive Solidago gigantea. To test for differences in inducibility between native and invasive populations, we measured secondary chemistry in both damaged and undamaged plants. We also performed bioassays with three specialist and two generalist insect herbivores from four different feeding guilds. There was no evidence that invasive populations had reduced concentrations of sesquiterpenes, diterpenes, or short-chain hydrocarbons (SCH), although significant variation among populations was detected. Sesquiterpene and diterpene concentrations were not influenced by damage to the host plant, whereas SCH concentrations were decreased by damage for both native and invasive plants. Performance of the three specialist insects was not affected by the continental origin of the host plant. However, larval mass of the generalist caterpillar Spodoptera exigua was 37% lower on native plants compared to invasive plants. The other generalist insect, a xylem-tapping spittlebug that occurs on both continents, performed equally well on native and invasive plants. These results offer partial support for the defense predictions of the EICA hypothesis: the better growth of Spodoptera caterpillars on European plants shows that some defenses have been lost in the introduced range, even though our measures of secondary chemistry did not detect differences between continents. Our results show significant variation in chemical defenses and herbivore performance across populations on both continents and emphasize the need for analysis across a broad spatial scale and the use of multiple herbivores.  相似文献   

5.
The allelopathic potential of eight aquatic plants associated with wild rice was investigated using lettuce and wild rice seedling bioassays. Rhizome aqueous extracts of Scirpus acutus, Potamogeton natans, Nymphaea odorata, Nuphar variegatum; shoot extract of Eleocharis smallii; whole plant extract of Myriophyllum verticillatum; and leaf extract of P. natans significantly reduced the root length of lettuce and wild rice seedlings. The lettuce seedling bioassay was more sensitive than the wild rice bioassay. Shoot growth was less affected than the root growth. Water extract of sediments associated with the aquatic plants had little growth inhibitory effect on wild rice. Our study did not yield any conclusive evidence that the wild rice-associated aquatic plants have allelopathic effects on wild rice. We emphasize the use of target species as a bioassay material in allelopathic studies. Further investigation on allelopathic effects of lake sediments associated with the neighboring plants of wild rice is necessary to evaluate their ecological significance.  相似文献   

6.
Five of the most common macrophytes from an aquaculture facility with high densities of the herbivorous Asian grass carp (Ctenopharyngodon idella) were commonly unpalatable to three generalist consumers—grass carp and the native North American crayfishes Procambarus spiculifer and P. acutus. The rooted vascular plant Micranthemum umbrosum comprised 89% of the total aboveground plant biomass and was unpalatable to all three consumers as fresh tissues, as homogenized pellets, and as crude extracts. Bioassay-guided fractionation of the crude extract from M. umbrosum led to four previously known compounds that each deterred feeding by at least one consumer: 3,4,5-trimethoxyallylbenzene (1) and three lignoids: β-apopicropodophyllin (2); (−)-(3S,4R,6S)-3-(3′,4′-methylenedioxy-α-hydroxybenzyl)-4-(3″,4″-dimethoxybenzyl)butyrolactone (3); and (−)-hibalactone (4). None of the remaining four macrophytes produced a chemically deterrent extract. A 16-mo manipulative experiment showed that the aboveground biomass of M. umbrosum was unchanged when consumers were absent, but the biomass of Ludwigia repens, a plant that grass carp preferentially consumed over M. umbrosum, increased over 300-fold. Thus, selective feeding by grass carp effectively eliminates most palatable plants from this community and promotes the persistence of the chemically defended M. umbrosum, suggesting that plant defenses play critical yet understudied roles in the structure of freshwater plant communities.  相似文献   

7.
Invasive plant species can have significant ecological and economic impacts. Although numerous hypotheses highlight the importance of the chemical defenses of invasive plant species, the chemical ecology of many invasive plants has not yet been investigated. In this study, we provide the first quantitative investigation of variation in iridoid glycoside concentrations of the invasive plant Dalmatian toadflax (Linaria dalmatica). We examined variation in chemical defenses at three levels: (1) variation within and among populations; (2) variation due to phenology and/or seasonal differences; and (3) variation among plant parts (leaves, flowers, and stems). Further, we examined two biological control agents introduced to control L. dalmatica for the ability to sequester iridoid glycosides from this invasive plant. Results indicate that L. dalmatica plants can contain high concentrations of iridoid glycosides (up to 17.4% dry weight of leaves; mean = 6.28 ± 0.5 SE). We found significant variation in iridoid glycoside concentrations both within and among plant populations, over the course of the growing season, and among plant parts. We also found that one biological control agent, Calophasia lunula (Lepidoptera: Noctuidae), was capable of sequestering antirrhinoside, an iridoid glycoside found in L. dalmatica, at levels ranging from 2.7 to 7.5% dry weight. A second biological control agent, Mecinus janthinus (Coleoptera: Curculionidae), a stem-mining weevil, did not sequester iridoid glycosides. The demonstrated variation in L. dalmatica chemical defenses may have implications for understanding variation in the degree of invasiveness of different populations as well as variation in the efficacy of biological control efforts.  相似文献   

8.
Cyanide production has been reported from over 2500 plant species, including some members of the Brassicaceae. We report that the important invasive plant, Alliaria petiolata, produces levels of cyanide in its tissues that can reach 100 ppm fresh weight (FW), a level considered toxic to many vertebrates. In a comparative study, levels of cyanide in leaves of young first-year plants were 25 times higher than in leaves of young Arabidopsis thaliana plants and over 150 times higher than in leaves of young Brassica kaber, B. rapa, and B. napus. In first-year plants, cyanide levels were highest in young leaves of seedlings and declined with leaf age on individual plants. Leaves of young plants infested with green peach aphids (Myzus persicae) produced just over half as much cyanide as leaves of healthy plants, suggesting that aphid feeding led to loss of cyanide from intact tissues before analysis, or that aphid feeding inhibited cyanide precursor production. In a developmental study, levels of cyanide in the youngest and oldest leaf of young garlic mustard plants were four times lower than in the youngest and oldest leaf of young Sorghum sudanense (cv. Cadan 97) plants, but cyanide levels did not decline in these leaves with plant age as in S. sudanense. Different populations of garlic mustard varied moderately in the constitutive and inducible expression of cyanide in leaves, but no populations studied were acyanogenic. Although cyanide production could result from breakdown products of glucosinolates, no cyanide was detected in vitro from decomposition of sinigrin, the major glucosinolate of garlic mustard. These studies indicate that cyanide produced from an as yet unidentified cyanogenic compound is a part of the battery of chemical defenses expressed by garlic mustard.  相似文献   

9.
Large interspecific differences in redox potential exist among herbivorous lepidopteran larvae. Reducing conditions occur in the midguts ofManduca sexta (Sphingidae) andPolia latex (Noctuidae), whereas oxidizing conditions prevail in the midguts ofLymantria dispar (Lymantriidae),Danaus plexippus (Danaidae), andPapilio glaucus (Papilionidae). The epithelium of the posterior midgut ofM. sexta fed a diet containing bismuth subnitrate accumulates bismuth sulfide, suggesting that sulfide might be one of the reducing agents responsible for the maintenance of reducing conditions in this species. We propose that the effects of plant allelochemicals in insect herbivores will be strongly affected by gut redox conditions and that the regulation of gut redox conditions is an important adaptation of insect herbivores to the chemical defenses of plants. The redox state of the gut is yet another insect trait that must be included in the analysis of plant-insect interactions.  相似文献   

10.
Herbivore-induced plant responses can significantly change as a function of plant developmental stage and previous history of damage. Yet, empirical tests that assess the combined role of multiple damage events and age-dependent constraints on the ability of plants to induce defenses within and among tissues are scarce. This question is of particular interest for annual and/or short-lived perennial plant species, whose responses to single or multiple damage events over a growing season are likely to interact with ontogenetic constraints in affecting a plant’s ability to respond to herbivory. Using Plantago lanceolata and one of its specialist herbivores, Junonia coenia, we examined the effect of plant ontogeny (juvenile vs. mature developmental stages) and history of damage (single and multiple damage events early and/or late in the season) on plant responses to leaf damage. Plant responses to herbivory were assessed as induced chemical defenses (iridoid glycosides) and compensatory regrowth, in both above- and below-ground tissues. We found that constitutive concentration of iridoid glycosides markedly increased as plants matured, but plant ability to induce chemical defenses was limited to juvenile, but not mature, plant stages. In addition, induced defenses observed 7 d following herbivory in juvenile plants disappeared 5 wk after the first herbivory event, and mature plants that varied considerably in the frequency and intensity of damage received over 5 wk, did not differ significantly in their levels of chemical defenses. Also, only small changes in compensatory regrowth were detected. Finally, we did not observe changes in below-ground tissues’ defenses or biomass a week following 50% removal of leaf tissues at either age class or history of damage. Together, these results suggest that in P. lanceolata and perhaps other systems, ontogenetic trajectories in plant growth and defenses leading to strong age-dependent induced responses may prevail over herbivore-induced indirect interactions.  相似文献   

11.

In response to herbivory, plants emit volatile compounds that play important roles in plant defense. Herbivore-induced plant volatiles (HIPVs) can deter herbivores, recruit natural enemies, and warn other plants of possible herbivore attack. Following HIPV detection, neighboring plants often respond by enhancing their anti-herbivore defenses, but a recent study found that herbivores can manipulate HIPV-interplant communication for their own benefit and suppress defenses in neighboring plants. Herbivores induce species-specific blends of HIPVs and how these different blends affect the specificity of plant defense responses remains unclear. Here we assessed how HIPVs from zucchini plants (Cucurbita pepo) challenged with different herbivore species affect resistance in neighboring plants. Volatile “emitter” plants were damaged by one of three herbivore species: saltmarsh caterpillars (Estigmene acrea), squash bugs (Anasa tristis), or striped cucumber beetles (Acalymma vittatum), or were left as undamaged controls. Neighboring “receiver” plants were exposed to HIPVs or control volatiles and then challenged by the associated herbivore species. As measures of plant resistance, we quantified herbivore feeding damage and defense-related phytohormones in receivers. We found that the three herbivore species induced different HIPV blends from squash plants. HIPVs induced by saltmarsh caterpillars suppressed defenses in receivers, leading to greater herbivory and lower defense induction compared to controls. In contrast, HIPVs induced by cucumber beetles and squash bugs did not affect plant resistance to subsequent herbivory in receivers. Our study shows that herbivore species identity affects volatile-mediated interplant communication in zucchini, revealing a new example of herbivore defense suppression through volatile cues.

  相似文献   

12.
The parasitic wasp Trogus pennator (Hymenoptera: Ichneumonidae) attacks larvae in two genera of Papilionidae, Eurytides and Papilio, on plants in a variety of families. The female wasps' responses to food plants, feeding damage, and frass were examined in a series of experiments designed to test the hypothesis that parasitic wasps that specialize on host taxa and seek their hosts in a variety of habitats exhibit fixed responses to host-derived cues and more flexible responses to cues associated only with the hosts' food plants. Naive T. pennator females showed no preferences when offered either a choice between two papilionid food plants or a choice between a food plant and a plant not used for food by Papilionidae. After experience with hosts in the presence of a particular food plant, however, wasps preferred that plant. Naive wasps did prefer plants damaged by host larvae over plants damaged by nonhost (saturniid) larvae and also preferred methylene chloride extracts of host frass over extracts of frass from saturniid larvae fed on the same plant species, results indicating that the responses of T. pennator females to host-derived cues are innate. The chemical compositions of the extracts of frass from several papilionid and one saturniid species were also examined, and the significance of the finding that no host-specific patterns were detected among the major components of the extracts is discussed.  相似文献   

13.
The novel weapons hypothesis states that some invasive weed species owe part of their success as invaders to allelopathy mediated by allelochemicals that are new to the native species. Presumably, no resistance has evolved among the native species to this new allelochemical (i.e., the novel weapon). In their native habitat, however, the plants that co-evolved with these invasive species have theoretically evolved defenses that obviate the allelochemical advantage. Previous studies have claimed that catechin is such a novel weapon of spotted knapweed (Centaurea stoebe = C. maculosa), an invasive species in the non-native habitat of North America. These studies indicated that (−)-catechin is more phytotoxic than (+)-catechin. Other studies have not found sufficient catechin in field soils to support this theory. We report that (−)-catechin and (+)-catechin are essentially equal, but poorly phytotoxic to a variety of plant species in bioassays without soil. In a dose/response experiment with Montana soils, we found the lowest dose for a growth reduction of two native Montana grasses (Koeleria macrantha and Festuca idahoensis) by a racemic mixture of (±)-catechin that ranged from about 25 to 50 mM, concentrations, orders of magnitude higher than expected in nature. Autoclaving the soil before adding the catechin did not affect the activity of catechin. We found (−)-catechin to be a potent antioxidant, in contrast to a previous claim that it acts as an allelochemical by causing oxidative stress. Our findings suggest that catechin is not a novel weapon of spotted knapweed and that other allelochemical(s) or alternative mechanisms must be found to explain the success of this species as an invader in North America.  相似文献   

14.
Prior electrophoretic and morphological studies have identified two closely related, economically important tephritid flies,R. mendax (Curran) andR. pomonella (Walsh), which infest the fruits of ericaceous and rosaceous plants, respectively. Further studies also have shown consistent differences among these species in their ovipositional preferences for apples and highbush blueberries and have determined that their ovipositional behavior is elicited by extracts obtained from these fruits. In this paper we report the results of an experiment that tested whether these species show distinct electroantennogram (EAG) responses to a large array of compounds present in gas chromatograph-fractionated pentane extracts of apples and highbush blueberries.R. mendax andR. pomonella flies were found to have significant differences in their antennal sensitivity to 11 blueberry and nine apple extract peaks, which correspond to 24.4% of all blueberry and 25.0% of all apple peaks that elicited a measurable EAG response from either species. Interspecific differences in peripheral sensitivity were more pronounced for blueberry than apple extract;R. pomonella flies were most sensitive to blueberry compounds with low retention times, whereasR. mendax flies responded to blueberry compounds with a broader range of retention times. Both species were most sensitive to apple peaks with high retention times. The retention times of most apple and blueberry peaks that elicited EAG responses fromR. mendax andR. pomonella flies were different from the retention times of seven attractant fruit esters that were previously identified by Fein et al. (1982). The identification of these unknown apple and blueberry compounds could lead to the discovery of new chemical cues that mediate the host-plant preferences of these sibling species.  相似文献   

15.
Polyphenols from two brown algae,Fucus vesiculosus (L.) andAscophyllum nodosum (L.) Le Jolis, inhibited feeding by the herbivorous snail,Littorina littorea. The active compounds were characterized as phloroglucinol polymers with a wide molecular weight range (mol wt <30,000 to >300,000) by spectroscopic, Ultrafiltration, thin-layer chromatographic, and chemical degradation data. As little as 1% (dry wt) polyphenol in food reduced feeding by more than 50%, and polyphenolic extracts inhibited feeding entirely when present in concentrations of 2–5% (dry wt). Commercially available phloroglucinol dihydrate and gallotannin, which are known herbivore feeding deterrents in terrestrial plants, inhibitedL. littorea feeding when added to food media in concentrations similar to those above. We conclude that polyphenols inF. vesiculosus andA. nodosum are functionally similar to terrestrial plant polyphenols (tannins) in providing chemical defenses against herbivores. This research is the first demonstration that chemical compounds defend these two dominant, perennial marine algae from the major herbivore found in their community.  相似文献   

16.
Rhyssomatus lineaticollis is a milkweed specialist whose larvae feed upon pith parenchyma in ramet stems of the common milkweed, Asclepias syriaca. Compared with other specialist insect herbivores on milkweeds, this curculionid beetle is unusual in that it is cryptically colored and does not sequester cardenolides characteristic of milkweed chemical defense. Based upon optimal defense theory, we predicted that pith tissue would be low in defensive compounds and that oviposition into the pith would spatially avoid cardenolides. We rejected this hypothesis because we found that pith tissue has a relatively high cardenolide concentration compared to cortex, epidermis, and leaf tissues. Moreover, we found total plant cardenolide concentration was lower in plants that contained the beetle eggs. Cardenolide concentrations were different among tissues in intact stems without the pith herbivore compared to stems where it was present. Furthermore, the overall polarity of the cardenolides present varied among plant tissues and between plants with and without R. lineaticollis eggs. Although we found lower concentrations of cardenolide in piths where the eggs were present, the cardenolides present in the pith contained more nonpolar forms, indicating that the plant may be responding to herbivory by increasing toxic efficacy of cardenolide defenses while lowering the total concentration. We suggest that preoviposition behavior by female beetles, which includes feeding on new leaves of the plant, is a mechanism by which females manipulate plant chemistry and assess quantitative and qualitative changes in cardenolide chemistry in response to herbivory prior to oviposition.  相似文献   

17.
Arbuscular mycorrhizal fungi can strongly influence the metabolism of their host plant, but their effect on plant defense mechanisms has not yet been thoroughly investigated. We studied how the principal direct defenses (iridoid glycosides) and indirect defenses (volatile organic compounds) of Plantago lanceolata L. are affected by insect herbivory and mechanical wounding. Volatile compounds were collected and quantified from mycorrhizal and non-mycorrhizal P. lanceolata plants that underwent three different treatments: 1) insect herbivory, 2) mechanical wounding, or 3) no damage. The iridoids aucubin and catalpol were extracted and quantified from the same plants. Emission of terpenoid volatiles was significantly higher after insect herbivory than after the other treatments. However, herbivore-damaged mycorrhizal plants emitted lower amounts of sesquiterpenes, but not monoterpenes, than herbivore-damaged non-mycorrhizal plants. In contrast, mycorrhizal infection increased the emission of the green leaf volatile (Z)-3-hexenyl acetate in untreated control plants, making it comparable to emission from mechanically wounded or herbivore-damaged plants whether or not they had mycorrhizal associates. Neither mycorrhization nor treatment had any influence on the levels of iridoid glycosides. Thus, mycorrhizal infection did not have any effect on the levels of direct defense compounds measured in P. lanceolata. However, the large decline in herbivore-induced sesquiterpene emission may have important implications for the indirect defense potential of this species.  相似文献   

18.
The leaves of tropical forest trees are most likely to suffer herbivore damage during the period of expansion. Herbivore selection on young leaves has given rise to a variety of leaf developmental strategies and age-specific chemical defense modes. We are studying correlations between leaf developmental types and chemical defenses in the Neotropical genus Inga. We have characterized defense metabolites in Inga goldmanii and Inga umbellifera, two species that co-occur in the lowland moist forest of Panama. These congeners have markedly different young-leaf developmental phenotypes but suffer approximately equal rates of herbivory. Bioassays of whole and fractionated leaf extracts using larvae of Heliothis virescens show that I. goldmanii chemical defenses are nearly three times more inhibitory than those of I. umbellifera. In both species, most of the inhibitory activity resides in complex mixtures of monomeric and polymeric flavan-3-ols. This group comprises >30% of young leaf dry weight in both I. goldmanii and I. umbellifera. The species’ phenolic chemistry differs markedly, however, both in the structure of the monomeric units and in the distribution of polymer sizes. The differences in chemical structure have pronounced effects on their bioactivities, with I. goldmanii flavans being twice as inhibitory to H. virescens larvae as I. umbellifera flavans, and more than three times more efficient at protein binding. Given the extraordinarily high polyphenol concentrations that are found in the young leaves of these species, protein precipitation could be an important mechanism of growth inhibition. Nevertheless, our data show that another mode of phenolic action, possibly oxidative stress, occurs simultaneously.  相似文献   

19.
Evidence for Metabolic Turnover of Polyphenolics in Tropical Brown Algae   总被引:1,自引:1,他引:0  
Polyphenolic chemical defenses of plants have traditionally been classified as immobile or quantitative and as such are believed to have low to negligible rates of turnover. This assumption is an important element in many ecological theories of chemical defense that invoke cost versus benefit relationships, because (1) turnover increases the metabolic cost of maintaining an effective level of defense, and (2) changes in the rate of turnover could affect the conclusions of studies that rely upon static concentration (standing crop) measurements, since changes in compound synthesis may not emerge as corresponding changes in compound concentration. By using a stable-isotope labeling technique, we measured rates of synthesis and turnover for the polyphenolic compounds of marine brown algae in laboratory and field experiments. During the laboratory experiment, we observed the relatively rapid turnover of phlorotannins in a population of the tropical brown alga Lobophora variegata. In order to determine if such metabolic turnover in brown algae occurred under natural conditions, we then measured in situ rates of synthesis, polymerization, and turnover for extractable phlorotannins in two species of tropical marine brown algae, Sargassum hystrix var. buxifolium (Fucales) and Dictyopteris justii (Dictyotales), over a 17-day period in the field. We found that phlorotannins in L. variegata and S. hystrix var. buxifolium demonstrated rapid rates of turnover in laboratory culture and in situ field experiments, respectively. The trends for D. justii also support the presence of turnover. Results indicate that (1) the assumption that algal polyphenolics can be grouped with the tannins of vascular plants as "immobile" defenses needs to be reevaluated, (2) estimates of the metabolic cost of algal polyphenolics that presume negligible rates of turnover may significantly underestimate the total cost of defense, and (3) studies designed to test the predictions of ecological theories for the phlorotannin concentrations of tropical brown algae may be affected by changes in the rates of metabolic turnover.  相似文献   

20.
In phytophagous insects, experience can increase positive responses towards non-host plant extracts or induce oviposition on non-host plants, but the underlying chemical and behavioral mechanisms are poorly understood. By using the diamondback moth, Plutella xylostella, its host plant Chinese cabbage, and a non-host plant Chrysanthemum morifolium, as a model system, we observed the experience-altered olfactory responses of ovipositing females towards volatiles of the non-host plant, volatiles of pure chemicals (p-cymene and α-terpinene) found in the non-host plant, and volatiles of host plants treated with these chemicals. We assessed the experience-altered oviposition preference towards host plants treated with p-cymene. Naive females showed aversion to the odors of the non-host plant, the pure chemicals, and the pure chemical-treated host plants. In contrast, experienced females either became attracted by these non-host odors or were no longer repelled by these odors. Similarly, naive females laid a significantly lower proportion of eggs on pure chemical-treated host plants than on untreated host plants, but experienced females laid a similar or higher proportion of eggs on pure chemical-treated host plants compared to untreated host plants. Chemical analysis indicated that application of the non-host pure chemicals on Chinese cabbage induced emissions of volatiles by this host plant. We conclude that induced preference for previously repellent compounds is a major mechanism that leads to behavioral changes of this moth towards non-host plants or their extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号