共查询到16条相似文献,搜索用时 62 毫秒
1.
研究了Ti-1300合金经不同温度固溶+缓慢升温时效处理后的显微组织和拉伸性能.结果表明,在相变点之上和之下固溶+随炉升温时效处理后合金发生了不同的相变,对应的拉伸性能也有很大的不同.Ti-1300合金在相变点之上固溶处理后缓慢升温到500 ℃时效处理发生β→ω转变,试样强度很高,而塑性很差.Ti-1300合金在相变点之下固溶处理+随炉升温时效处理发生β→α转变,试样经随炉升温到570 ℃时效处理后的抗拉强度为1430 MPa,而延伸率也达到8%. 相似文献
2.
研究了Ti-1300合金经不同温度固溶处理和固溶+时效处理后的组织和性能。结果表明:Ti-1300合金在固溶处理后,随着固溶温度升高,合金的抗拉强度和屈服强度逐渐降低,断面收缩率先升高后降低,断后伸长率有所升高。Ti-1300合金在850℃固溶处理可获得最佳的综合性能。通过固溶和时效处理,Ti-1300合金硬度随着固溶温度的升高而增大。当固溶处理在相变点以下时,β相中时效析出次生αs相较粗大;而固溶处理在相变点以上时,β相中时效析出次生αs相较细小且均匀。 相似文献
3.
对Ti-53(Ti-5Al-1Sn-1Cr-1Fe)钛合金在不同热处理条件下的显微组织和力学性能进行了研究。结果表明,完全退火处理后,β相明显减少,α相发生再结晶,组织由针片状α相+少量β相组成,强度、硬度较低,塑韧性较高;固溶处理后,部分β相无扩散转变为α’相;时效处理后,固溶时出现的部分不稳定α’相发生分解,最终组织为片状α相+高度弥散的β相+少量α’相,还出现一定量的β斑,强度和硬度明显提高,塑韧性也有所提高。Ti-53合金的室温拉伸断口表现为韧脆混合断裂特征。 相似文献
4.
通过光学显微镜(OM)、透射电子显微镜(TEM)、X射线衍射(XRD)等检测方法,研究等通道转角挤压变形后Ti-1300合金的组织与性能。研究结果表明:Ti-1300合金经过ECAP变形,发生晶粒转动、晶内多系滑移以及晶界处螺型位错与刃型位错的混合位错交错排列的协调作用,致使晶界不能破碎,原始晶界清晰可见,晶内出现大量的相互交错的剪切滑移带,显微组织中存在大量平行细密的板条组织以及位错团、位错胞,位错密度增大,但在整个ECAP变形过程中并未产生形变诱导ω或α″相。织构分析结果表明ECAP变形过程中Ti-1300合金初始(110)■织构逐渐转变为α织构,并形成D织构及立方织构。 相似文献
5.
《稀有金属材料与工程》2004,21(6):19-21
采用步进轧制工艺制备了Ti-6-22-22S合金Ф50mm棒材,对加工、热处理、组织与性能的关系进行了分析。结果表明:在两相区上部温度960℃轧制获得细网篮组织,棒材性能较好且数据均匀;热处理后,得到双态组织,强度.塑性达到优良组合,而片层状组织强度较高,但塑性稍低。 相似文献
6.
对经过790℃固溶处理后的Ti-26合金棒材进行了不同温度及时间的时效处理,研究了时效温度和时间对Ti-26合金棒材显微组织和拉伸性能的影响。研究结果表明:在450-550℃范围内,随时效温度升高,合金组织有针状“相弥散物析出。升温至510℃,相同时效时间内析出α相数量最多,高于510℃,部分析出α相开始溶解。合金时效处理10h内,随时效时间延长,合金组织针状α相弥散物数量增加,且针状α相存在跨晶界长大现象。合金经510℃×10h时效处理,OL相形核和长大达到最佳匹配,Ti-26合金获得理想的强度和塑性匹配。 相似文献
7.
利用OM和TEM系统研究了Ti-1300合金的室温变形行为。结果表明:Ti-1300合金在不同温度下进行固溶处理后进行拉伸变形,在应力-应变曲线上没有出现双屈服的现象;Ti-1300合金因含有较多的β稳定元素引起β相的稳定性增加,在室温变形机制主要是位错滑移和孪生;塑性变形过程中位错将产生滑移、缠结和割阶等交互作用,随着塑性变形量增加10%,Ti-1300合金的显微硬度约增加210 MPa。 相似文献
8.
《稀有金属材料与工程》2006,23(1):24-27
研究了Ti-6Al-7Nb合金不同热加工与热处理工艺引起的显微组织和力学性能变化,探讨该合金组织变化的特点和性能变化的内在规律。结果表明,在工业化生产条件下,Nb元素添加采用铌钛中间合金,选用适宜的铸锭熔炼工艺参数,可以获得成分均匀、无富Nb偏析的优质铸锭。在两相区锻造或轧制后坯料在700℃~800℃范围内退火,合金组织与性能均能满足ASTM和ISO标准要求。 相似文献
9.
研究了α+β锻造、近β锻造、β锻造3种锻造工艺对Ti-1300合金棒材组织和力学性能的影响。结果表明,锻造工艺对Ti-1300合金显微组织影响较大。经α+β锻造后,Ti-1300合金棒材的初生α相为细小等轴状,近β锻造后多为短棒状,β锻造后为沿晶界分布的尺寸较大的块状α相。经不同工艺锻造的Ti-1300合金棒材热处理后,近β锻造和β锻造的抗拉强度明显高于α+β锻造,同时β锻造后棒材的断裂韧性最高,近β锻造次之。本实验条件下,经β锻造的Ti-1300合金棒材抗拉强度达到1390 MPa,断裂韧性超过70 MPa·m~(1/2),是最优的锻造工艺。 相似文献
10.
11.
《稀有金属材料与工程》2004,21(6):22-24
研究了冷加工率对Ti-35钛合金板材组织性能的影响。结果表明:Ti-35钛合金板材随着冷加工率的增加,拉伸强度增高,塑性下降,这是符合一般规律的。然而,当冷变形率达80%,塑性仍然保持在16%,证明这是一种高塑性合金,随着冷变形量增加,晶粒被拉长。当变形率达60%~80%时,晶粒呈纤维化,经退火后发生再结晶,晶粒等轴化,并伴随着合金塑性的提高。 相似文献
12.
对Ti-1300合金在固溶处理过程中晶粒的长大行为进行系统研究。结果表明:当固溶温度低于β转变温度时,未溶解的α相使得晶粒长大缓慢;在高于β转变温度固溶处理时,晶粒随着温度升高而快速增大。晶粒长大动力表明:在840~950℃固溶处理时,β晶粒的长大规律可用D=1.13×1010 exp(-2.1×104/T)描述,且晶界迁移的表观激活能为Q=350 k J/mol。当固溶温度为840、870和900℃时,晶粒长大指数随固溶温度升高而增加,分别为0.31、0.55、0.56。 相似文献
13.
采用OM、SEM、XRD和TEM等研究了固溶态Ti-1300合金在350~700℃等温时效过程中相结构和组织转变。结果表明,Ti-1300合金在350℃等温时效时,β相基体上开始弥散析出细小的颗粒状ω相,后期ω相消失,出现了片状的α相。亚稳β相的分解方式为:β→ω+β→α+β。在400℃等温时效1 h时,亚稳β相分离出了β′相,继续保温,β′相消失,出现了长针状α相,亚稳β相的分解方式为:β→β′+β→α+β。在500~700℃等温时效时,α相在β晶界和晶粒内亚晶界上快速形核,随着保温时间的延长,晶界α相逐渐向晶内生长为α集束,随着时效温度升高,α相的片层越厚;亚稳β相的分解方式为:β→α+β。 相似文献
14.
为了对Ti-12Zr合金在牙科的临床使用提供实验及理论依据,借助维氏硬度测量、电化学性能测试和扫描电子显微镜镜(SEM)的观察及X-射线衍射(XRD)的分析,研究了牙用Ti-12Zr合金经200、400、500、600和800℃加热(氧化)处理后合金的表面维氏硬度、形貌、结构及电化学性能。结果表明:经不同热氧化温度处理的Ti-12Zr合金表面能够生成不同厚度的ZrO2和(Ti,Zr)O2陶瓷层,其硬度比Ti-12Zr合金基材高;在人工唾液环境中,在500℃以下,随热氧化温度的升高,Ti-12Zr合金表面生成的陶瓷层耐腐蚀性能随着温度的升高而增加,500℃时,腐蚀电位Ecorr达到最大值(-18mV),抗腐蚀性能最好,超过500℃时,Ecorr又降低,抗腐蚀性能变差。 相似文献
15.
对不同原始状态的Ti1300合金电子束焊接样品进行不同的热处理,研究了焊前热处理和焊后热处理工艺对合金焊接样品的组织和力学性能影响。结果表明,焊接前不同热处理对合金焊缝组织和性能影响不大,在焊缝无热处理情况下,焊缝主要由较大尺寸的柱状β晶和亚晶构成,形成的α相极少,并主要分布在稳定晶粒的晶界处,这种组织使得焊缝区的强度和塑性明显低于基体。焊接后无论采取哪种热处理工艺,都无法改变合金焊缝区β晶粒的形态和尺寸,亚晶依然存在。热处理可以调节焊缝区α相的含量、尺寸和形态,但析出的α相的分布总体趋向于在稳定晶界处形成。焊缝区的性能依赖于析出α相的尺寸和数量,当单独在较低温度退火或时效时,焊缝区α相强化效果明显,焊缝强度大于基体,断裂发生在基体。 相似文献
16.
Ti-1300合金的热变形行为研究 总被引:2,自引:1,他引:2
采用Gleeble-1500型热模拟试验机对Ti-1300近β钛合金进行了等温恒应变速率压缩试验.变形温度范围为:920~1010℃,应变速率范围为:0.01~10 s-1,最大变形量为80%.根据试验数据建立了Ti-1300合金高温热变形行为的流变应力模型,得出该合金的变形激活能为177.59 kJ/mol.结合样品的显微组织分析可知,该合金在低应变速率下发生了动态再结晶,且随着温度的升高,再结晶晶粒呈现长大的趋势:在高应变速率下以动态回复为主.结果表明,为获得细小的再结晶组织,Ti-1300钛合金宜在相变点以上50~150℃的温度范围内采用较低的变形速率进行锻造. 相似文献