首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Particle swarm-based olfactory guided search   总被引:3,自引:0,他引:3  
This article presents a new algorithm for searching odour sources across large search spaces with groups of mobile robots. The proposed algorithm is inspired in the particle swarm optimization (PSO) method. In this method, the search space is sampled by dynamic particles that use their knowledge about the previous sampled space and share this knowledge with other neighbour searching particles allowing the emergence of efficient local searching behaviours. In this case, chemical searching cues about the potential existence of upwind odour sources are exchanged. By default, the agents tend to avoid each other, leading to the emergence of exploration behaviours when no chemical cue exists in the neighbourhood. This behaviour improves the global searching performance. The article explains the relevance of searching odour sources with autonomous agents and identifies the main difficulties for solving this problem. A major difficulty is related with the chaotic nature of the odour transport in the atmosphere due to turbulent phenomena. The characteristics of this problem are described in detail and a simulation framework for testing and analysing different odour searching algorithms was constructed. The proposed PSO-based searching algorithm and modified versions of gradient-based searching and biased random walk-based searching strategies were tested in different environmental conditions and the results, showing the effectiveness of the proposed strategy, were analysed and discussed. Lino Marques is an auxiliary professor in the Department of Electrical Engineering, University of Coimbra, and he is a researcher in the Institute for Systems and Robotics (ISR-UC). He received his Licenciatura, MSc. and Ph.D. degrees in Electrical Engineering from the University of Coimbra, Portugal. His main research interests include embedded systems, mechatronics, robotics for risky environments, optical range sensors, artificial olfaction systems and mobile robot olfaction. Urbano Nunes is an associate professor of the University of Coimbra and a researcher of the Institute for Systems and Robotics (ISR-UC), where he has been involved in research and teaching since 1983. He received his Licenciatura and Ph.D. degrees in Electrical Engineering from the University of Coimbra, Portugal, in 1983 and 1995, respectively. He is the coordinator of the Mechatronics Laboratory of ISR-UC, and had been responsible for several funded projects in the areas of mobile robotics and intelligent vehicles. His research interests include mobile robotics, intelligent vehicles, and mechatronics. Professor Urbano Nunes serves on the Editorial Board of the Journal on Machine Intelligence and Robotic Control, and currently he is co-chair of the IEEE RAS TC on Intelligent Transportation Systems. Currently he is the Program Chair of the IEEE ITSC2006. He has served as General Co-Chair of ICAR 2003 and as member of several program committees of international conferences. Aníbal T. De Almeida graduated in Electrical Engineering, University of Porto, 1972, and received a Ph.D. in Electrical Engineering, from Imperial College, University of London, 1977. Currently he is a Professor in the Department of Electrical Engineering, University of Coimbra, and he is the Director of the Institute of Systems and Robotics since 1993. Professor De Almeida is a consultant of the European Commission Framework Programmes. He is the co-author of five books and more than one hundred papers in international journals, meetings and conferences. He has coordinated several European and national research projects.  相似文献   

2.
The paper describes an advanced multisensor demining robot. The robot transport system is based on a simple structure using pneumatic drive elements. The robot has robust design and can carry demining equipment up to 100 kg over rough terrains. Due to the adaptive possibilities of pedipulators to obstacles, the robot can adjust the working position of the demining sensors while searching for mines. The detection block consists of a metal detector, an infrared detector, and a chemical explosive sensor. The robot is controlled by means of an on-board processor and by an operator remote station in an interactive mode. Experimental results of the transport, control, and detection systems of the robot are presented.Michael Yu. Rachkov is Professor of Automation at the Moscow State Industrial University. He graduated in Automatic Control Systems from Moscow Higher Technical School, 1979. He held academic posts at the Institute for Problems in Mechanics, Russian Academy of Sciences. In 1986 he completed his PhD in industrial robotics and received his DSc in mobile robotics in 1997. Professor Rachkov has been leading in several international projects like EUREKA and REMAPHOS. He has published over 170 papers and several books in the field of automation, robotics and optimal control. He is a member of Russian Cosmonautics Academy and International Informatization Academy.Lino Marques is a research engineer at the Institute of Systems and Robotics of the University of Coimbra. He received the Engineering and MsC. degrees in Electrical Engineering from the Faculty of Science and Technology of this University in 1992 and 1997 respectively. He is currently working toward the Ph.D. degree and teaching in the Electrical and Computer Engineering Department. His current research interests include sensors, mechatronics, mobile robotics and industrial automation.Anábal T. De Almeida graduated in Electrical Engineering, University of Porto, 1972, and received a Ph.D. in Electrical Engineering, from Imperial College, University of London, 1977. Currently he is a Professor in the Department of Electrical Engineering, University of Coimbra, and he is the Director of the Institute of Systems and Robotics since 1993. Professor De Almeida is a consultant of the European Commission Framework Programmes. He is the co-author of five books and more than one hundred papers in international journals, meetings and conferences. He has coordinated several European and national research projects.  相似文献   

3.
4.
In this paper, it is presented a novel approach for the self-sustained resonant accelerometer design, which takes advantages of an automatic gain control in achieving stabilized oscillation dynamics. Through the proposed system modeling and loop transformation, the feedback controller is designed to maintain uniform oscillation amplitude under dynamic input accelerations. The fabrication process for the mechanical structure is illustrated in brief. Computer simulation and experimental results show the feasibility of the proposed accelerometer design, which is applicable to a control grade inertial sense system. Recommended by Editorial Board member Dong Hwan Kim under the direction of Editor Hyun Seok Yang. This work was supported by the BK21 Project ST·IT Fusion Engineering program in Konkuk University, 2008. This work was supported by the Korea Foundation for International Cooperation of Science & Technology(KICOS) through a grant provided by the Korean Ministry of Education, Science & Technology(MEST) in 2008 (No. K20601000001). Authors also thank to Dr. B.-L. Lee for the help in structure manufacturing. Sangkyung Sung is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the M.S and Ph.D. degrees in Electrical Engineering from Seoul National University in 1998 and 2003, respectively. His research interests include inertial sensors, avionic system hardware, navigation filter, and intelligent vehicle systems. Chang-Joo Kim is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the Ph.D. degree in Aeronautical Engineering from Seoul National University in 1991. His research interests include nonlinear optimal control, helicopter flight mechanics, and helicopter system design. Young Jae Lee is a Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the Ph.D. degree in Aerospace Engineering from the University of Texas at Austin in 1990. His research interests include integrity monitoring of GNSS signal, GBAS, RTK, attitude determination, orbit determination, and GNSS related engineering problems. Jungkeun Park is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University. Dr. Park received the Ph.D. in Electrical Engineering and Computer Science from the Seoul National University in 2004. His current research interests include embedded real-time systems design, real-time operating systems, distributed embedded real-time systems and multimedia systems. Joon Goo Park is an Assistant Professor of the Department of Electronic Engineering at Gyung Book National University, Korea. He received the Ph.D. degree in School of Electrical Engineering from Seoul National University in 2001. His research interests include mobile navigation and adaptive control.  相似文献   

5.
Adaptive stabilization of a class of linear systems with matched and unmatched uncertainties is considered in this paper. The proposed controller indeed stabilizes the uncertain system for any positive values of its non-adaptive gain that may be tuned to enhance dynamic response of system. The performance of uncertain system along with the Algebraic Riccati Equation that arises from the adaptive stabilizing controller is now formulated as a multi-objective Linear Matrix Inequality optimization problem. The decay rate and a factor governing the ultimate bound of the system states are considered to characterize the closed loop system performance. Finally, the effectiveness of the proposed controller is illustrated via stabilizing a mass-spring system. Recommended by Editorial Board member Gang Tao under the direction of Editor Young Il Lee. The authors would like to thank the reviewers for their valuable comments and suggestions that have improved the quality of this paper. Sandip Ghosh received the B.E. in Electrical Engineering from Bengal Engineering College (D.U.), Howrah, and Master in Control System Engineering from Jadavpur University, Kolkata, India, in 1999 and 2003 respectively. Presently he is pursuing the Ph.D. degree at Indian Institute of Technology, Kharagpur, India. His research interests include adaptive control, robust control and control of time-delay systems. Sarit K. Das is a Professor of Electrical Engineering Department, Indian Institute of Technology, Kharagpur, India. He received the Ph.D. degree in 1985 from the same department. His research interests include design of periodic controller, decoupling of multivariable systems, modeling and robust control of complex systems. Goshaidas Ray is a Professor of Electrical Engineering Department, Indian Institute of Technology, Kharagpur, India. He received the Ph.D. degree in 1982 from Indian Institute of Technology Delhi, India. His research interests include modeling, estimation, model-based control, intelligent control, robotic systems and distributed control systems.  相似文献   

6.
Security has become a very critical issue in the provision of mobile services. The Open Mobile Alliance (OMA) has specified a powerful security layer, the WTLS. In this paper, a VLSI architecture for the implementation of the WTLS integrity unit is proposed. The proposed architecture is reconfigurable in the sense that operates in three different modes: as Keyed-Hash Authentication Code (HMAC), as SHA-1 and MD5 hash functions, according to WTLS specifications. This multi-mode operation is achieved due to the reconfigurable applied design technique in the proposed architecture, which keeps the allocated area resources at a minimized level. The proposed architecture achieves high speed performance, due to the pipeline designed architecture. Especially, SHA-1 operation achieved throughput is equal to 1,7 Gbps, while MD5 operation mode bit rate is equal to 2,1 Gbps. The proposed architecture has been integrated by using VHDL and has been synthesized placed and routed in an FPGA device. Comparisons with related hash functions implementations have been done in terms of throughput, operating frequency, allocated area and Area-Delay product. The achieved performance of the SHA-1 operation mode is better at about 14–42 times compared with the other conventional works. In addition, MD5 performance is superior to the other works at about 6–18 times, in all of the cases. The proposed Integrity Unit is a very trustful and powerful solution for the WTLS layer. In addition, it can be integrated in security systems which are used for the implementation networks for wireless protocols, with special needs of integrity in data transmission. Nicolas Sklavos, Ph.D.: He is a Ph.D. Researcher with the Electrical and Computer Engineering Department, University of Patras, Greece. His interests include computer security, new encryption algorithms design, wireless communications and reconfigurable computing. He received an award for his Ph.D. thesis on “VLSI Designs of Wireless Communications Security Systems” from IFIP VLSI SOC 2003. He is a referee of International Journals and Conferences. He is a member of the IEEE, the Technical Chamber of Greece and the Greek Electrical Engineering Society. He has authored or co-authored up to 50 scientific articles in the areas of his research. Paris Kitsos, Ph.D.: He is currently pursuing his Ph.D. in the Department of Electrical and computer Engineering, University of Patras, Greece. He received the B.S. in Physics from the University of Patras in 1999. His research interests include VLSI design, hardware implementations of cryptography algorithms, security protocols for wireless communication systems and Galois field arithmetic implementations. He has published many technical papers in the areas of his research. Epaminondas Alexopoulos: He is a student of the Department of Electrical and Computer Engineering, University of Patras, Greece. His research includes hardware implementations, mobile computing and security. He has published papers in the areas of his research. Odysseas Koufopavlou, Ph.D.: He received the Diploma of Electrical Engineering in 1983 and the Ph.D. degree in Electrical Engineering in 1990, both from University of Patras, Greece. From 1990 to 1994 he was at the IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA. He is currently an Associate Professor at the Department of Electrical and Computer Engineering, University of Patras. His research interests include VLSI, low power design, VLSI crypto systems and high performance communication subsystems architecture and implementation. He has published more than 100 technical papers and received patents and inventions in these areas.  相似文献   

7.
A parameter search for a Central Pattern Generator (CPG) for biped walking is difficult because there is no methodology to set the parameters and the search space is broad. These characteristics of the parameter search result in numerous fitness evaluations. In this paper, nonparametric estimation based Particle Swarm Optimization (NEPSO) is suggested to effectively search the parameters of CPG. The NEPSO uses a concept experience repository to store a previous position and the fitness of particles in a PSO and estimated best position to accelerate a convergence speed. The proposed method is compared with PSO variants in numerical experiments and is tested in a three dimensional dynamic simulator for bipedal walking. The NEPSO effectively finds CPG parameters that produce a gait of a biped robot. Moreover, NEPSO has a fast convergence property which reduces the evaluation of fitness in a real environment. Recommended by Editorial Board member Euntai Kim under the direction of Editor Jae-Bok Song. Jeong-Jung Kim received the B.S. degree in Electronics and Information Engineering from Chonbuk National University in 2006 and the M.S. degree in Robotics from Korea Advanced Institute of Science and Technology in 2008. He is currently working toward a Ph.D. at the Korea Advanced Institute of Science and Technology. His research interests include biologically inspired robotics and machine learning. Jun-Woo Lee received the B.S. degree in Electronics, Electrical and Communication Engineering from Pusan National University in 2007. He is currently working toward an M.S. in the Korea Advanced Institute of Science and Technology. His research interests include swarm intelligence and machine learning. Ju-Jang Lee was born in Seoul, Korea, in 1948. He received the B.S. and M.S. degrees from Seoul National University, Seoul, Korea, in 1973 and 1977, respectively, and the Ph.D. degree in Electrical Engineering from the University of Wisconsin, in 1984. From 1977 to 1978, he was a Research Engineer at the Korean Electric Research and Testing Institute, Seoul. From 1978 to 1979, he was a Design and Processing Engineer at G. T. E. Automatic Electric Company, Waukesha, WI. For a brief period in 1983, he was the Project Engineer for the Research and Development Department of the Wisconsin Electric Power Company, Milwaukee. He joined the Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, in 1984, where he is currently a Professor. In 1987, he was a Visiting Professor at the Robotics Laboratory of the Imperial College Science and Technology, London, U.K. From 1991 to 1992, he was a Visiting Scientist at the Robotics Department of Carnegie Mellon University, Pittsburgh, PA. His research interests are in the areas of intelligent control of mobile robots, service robotics for the disabled, space robotics, evolutionary computation, variable structure control, chaotic control systems, electronic control units for automobiles, and power system stabilizers. Dr. Lee is a member of the IEEE Robotics and Automation Society, the IEEE Evolutionary Computation Society, the IEEE Industrial Electronics Society, IEEK, KITE, and KISS. He is also a former President of ICROS in Korea and a Counselor of SICE in Japan. He is a Fellow of SICE and ICROS. He is an Associate Editor of IEEE Transactions on Industrial Electronics and IEEE Transactions on Industrial Informatics.  相似文献   

8.
In this paper, it is shown that for low-order uncertain systems, there is no need to calculate all the minimum and maximum values of the coefficients for a perturbed system which is expressed in terms of polynomials and hence no need to formulate and test all the four Kharitonov's polynomials. Furthermore, for higher-order systems such as n ≥ 5, the usual four Kharitonov's polynomials need not be tested initially for sufficient condition of perturbed systems; rather, the necessary condition can be checked before going for sufficient condition. In order to show the effectiveness of the proposed method, numerical examples are shown and computational efficiency is highlighted.  相似文献   

9.
Compression and encryption technologies are important to the efficient solving of network bandwidth and security issues. A novel scheme, called the Image Compression Encryption Scheme (ICES), is presented. It combines the Haar Discrete Wavelet Transform (DWT), Significance-Linked Connected Component Analysis (SLCCA), and the Advance Encryption Standard (AES). Because of above reason the ICES efficiently reduce the overall processing time. This study develops a novel hardware system to compress and encrypt an image in real-time using an image compression encryption scheme. The proposed system exploits parallel processing to increase the throughout of the cryptosystem for Internet multimedia applications to implement the ICES. Using hardware acceleration for encryption and decryption, the FPGA implementation of DWT, SLCCA and the AES algorithm can be used. Using a pipeline structure, a very high data throughput of 330 Mbit/s at a clock frequency of 40 MHz was obtained. Therefore, the ICES is secure, fast and suited to high speed network protocols such as ATM (Asynchronous Transfer Mode), FDDI (Fiber Distributed Data Interface) or Internet multimedia applications. Shih-Ching Ou is working with the Department of Electrical Engineering, National Central University as a senior professor. His research interests include computer aided design, e-learning system, and virtual reality, etc. In August 2004, he serves as Leader University Professor and Director of Research and Development, now he act as Leader University Professor and Institute of Applied Information (Chairman). He has published a number of international journal and conferences papers related to these areas. Currently, he is the chief of Bioinformatics & CAD Laboratory. Hung-Yuan Chung joined the Department of Electrical Engineering at the National Central University, Chung-li, Taiwan as an associate professor in August 1987. Since August 1992, he was promoted as professor. In addition, he is a registered professional Engineer in R. O. C. He is a life member of the CIEE and the CIE. He received the outstanding Electrical Engineer award of the Chinese Institute of Electrical Engineering in October 2003. His research and teaching interests include System Theory and Control, Adaptive Control, Fuzzy Control, Neural Network Applications, and Microcomputer-Based Control Applications. Wen-Tsai Sung is a PhD candidate at Department of Electrical Engineering, National Central University in Taiwan. His research interests include computer aided design, web-based learning system, bioinformatics and virtual reality. He has published a number of international journal and conferences papers related to these areas. He received a BS degree from the Department of Industrial Education, National Taiwan Normal University, Taiwan in 1993 and received a MS degree from the Department of Electrical Engineering, National Central University, Taiwan in 2000. He has win the dragon thesis award; master degree thesis be recognized the most outstanding academic research. The thesis entitle is: “Integrated computer graphics system in a virtual environment.” Sponsor is Acer Foundation (Acer Universal Computer Co.). Currently, he is studying PhD at the Department of Electrical Engineering, National Central University as a researcher of Bioinformatics & CAD Laboratory.  相似文献   

10.
In this paper we introduce the logic programming languageDisjunctive Chronolog which combines the programming paradigms of temporal and disjunctive logic programming. Disjunctive Chronolog is capable of expressing dynamic behaviour as well as uncertainty, two notions that are very common in a variety of real systems. We present the minimal temporal model semantics and the fixpoint semantics for the new programming language and demonstrate their equivalence. We also show how proof procedures developed for disjunctive logic programs can be easily extended to apply to Disjunctive Chronolog programs. Manolis Gergatsoulis, Ph.D.: He received his B.Sc. in Physics in 1983, the M.Sc. and the Ph.D. degrees in Computer Science in 1986 and 1995 respectively all from the University of Athens, Greece. Since 1996 he is a Research Associate in the Institute of Informatics and Telecommunications, NCSR ‘Demokritos’, Athens. His research interests include logic and temporal programming, program transformations and synthesis, as well as theory of programming languages. Panagiotis Rondogiannis, Ph.D.: He received his B.Sc. from the Department of Computer Engineering and Informatics, University of Patras, Greece, in 1989, and his M.Sc. and Ph.D. from the Department of Computer Science, University of Victoria, Canada, in 1991 and 1994 respectively. From 1995 to 1996 he served in the Greek army. From 1996 to 1997 he was a visiting professor in the Department of Computer Science, University of Ioannina, Greece, and since 1997 he is a Lecturer in the same Department. In January 2000 he was elected Assistant Professor in the Department of Informatics at the University of Athens. His research interests include functional, logic and temporal programming, as well as theory of programming languages. Themis Panayiotopoulos, Ph.D.: He received his Diploma on Electrical Engineering from the Department of Electrical Engineering, National Technical Univesity of Athens, in 1984, and his Ph.D. on Artificial Intelligence from the above mentioned department in 1989. From 1991 to 1994 he was a visiting professor at the Department of Mathematics, University of the Aegean, Samos, Greece and a Research Associate at the Institute of Informatics and Telecommunications of “Democritos” National Research Center. Since 1995 he is an Assistant Prof. at the Department of Computer Science, University of Piraeus. His research interests include temporal programming, logic programming, expert systems and intelligent agent architectures.  相似文献   

11.
This paper investigates a new loop design approach of force balance control for the vibratory rate sensor application. The proposed force balance control design takes advantages of the modified automatic gain control configuration in controlling the system’s oscillating dynamics at the sense mode. The adapted automatic gain control scheme and force balance strategy, which maintains a constant oscillation magnitude in the sense mode, have several advantages. First it is possible to analyze a complicated nonlinear feedback system using a linear control theory, which resulted in straightforward prediction of closed loop performance. Moreover the control system to achieve the design goals can be implemented using a relatively simple feedback configuration. An application to the vibratory rate sensor using the proposed automatic gain control configuration witnessed that the force balance control can be validated in a practical design process. Experiments using an actual micromachined rate sensor verified the feasibility of the proposed control scheme with demonstration of enhanced performance. Recommended by Editorial Board member Dong Hwan Kim under the direction of Editor Hyun Seok Yang. This work was supported by the BK21 Project, ST-IT Fusion Engineering program in Konkuk University, 2008. This work was supported by the KICOS through a grant provided by the Korean Ministry of Education, Science & Technology in 2008 (No. K20601000001). Sangkyung Sung is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the M.S. and Ph.D. degrees in Electrical Engineering from Seoul National University in 1998 and 2003, respectively. His research interests include inertial sensors, avionic system hardware, integrated navigation, and intelligent vehicle technologies. Sukchang Yun is a Ph.D. course student of the Department of Aerospace Information Engineering at Konkuk University, Korea. He received the M.S. degree in Aerospace Engineering from Konkuk University in 2009. His research interests include MEMS mechatronics and control, INS/GPS integration, and instrumentation. Woon-Tahk Sung is an Senior Engineer of the Communication Reserarch Center, Samsung Electronics Co. Ltd. He received the Ph.D. degree in School of Electrical Engineering from Seoul National University in 2007. His research interests include analog and digital control algorithm, MEMS piezo actuator, circuit design for microsystems using VCM. Chang Joo Kim is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the Ph.D. degree in Aeronautical Engineering from Seoul National University in 1991. His research interests include nonlinear optimal control, helicopter flight mechanics, and helicopter system design. Young Jae Lee is a Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the Ph.D. degree in Aerospace Engineering from the University of Texas at Austin in 1990. His research interests include integrity monitoring of GNSS signal, GBAS, RTK, attitude determination, orbit determination, and GNSS related engineering problems.  相似文献   

12.
Summary A self-stabilizing system has the property that it will converge to a desirable state when started from any state. Most previous researchers assumed that processes in self-stabilizing systems may communicate through shared variables while those that studied meassage passing systems allowed messages with unbounded size. This paper discusses the development of self-stabilizing systems which communicate through message passing, and in which messages may be lost in transit. The systems presented all use fixed size message headers. First, a selfstabilizing version of theAlternating Bit Protocol, a fundamental communication protocol for transmitting data across an unreliable communication medium, is presented. Secondly, the alternating-bit protocol is used to construct a self-stabilizing token ring. Yehuda Afek received a B.Sc. in Electrical Engineering from the Technion and an M.S. and Ph.D. in Computer Science from the University of California, Los Angeles. In 1985 he joined the Distributed Systems research Department in AT&T Bell Laboratories and in 1988 he joined the Department of Computer Science in Tel-Aviv University. His interests include communication protocols, distributed systems, and asynchronous shared memories. Geoffrey M. Brown received the BS degree in Engineering from Swarthmore College in 1982, the MS degree in Electrical Engineering from Stanford University in 1983, and the Ph.D. degree in Electrical Engineering from the University of Texas at Austin in 1987. From 1983 to 1984 he worked for Motorola in Austin, TX. Currently he is an Assistant Professor in the School of Electrical Engineering at Cornell University. In 1990, Brown was named a Presidential Young Investigator by the National Science Foundation.This work supported in part by NSF grant CCR-9058180  相似文献   

13.
This paper proposes a novel method to designing an H PID controller with robust stability and disturbance attenuation. This method uses particle swarm optimization algorithm to minimize a cost function subject to H -norm to design robust performance PID controller. We propose two cost functions to design of a multiple-input, multiple-output (MIMO) and single-input, single-output (SISO) robust performance PID controller. We apply this method to a SISO flexible-link manipulator and a MIMO super maneuverable F18/HARV fighter aircraft system as two challenging examples to illustrate the design procedure and to verify performance of the proposed PID controller design methodology. It is shown with the MIMO super maneuverable F18/HARV fighter system that PSO performs well for parametric optimization functions and performance of the PSO-based method without prior domain knowledge is superior to those of existing GA-based and OSA-based methods for designing H PID controllers. Recommended by Editorial Board member Jietae Lee under the direction of Editor Young-Hoon Joo. This work was supported by the Iranian Telecommunication Research Center (ITRC) under Grant T500-11629. Majid Zamani received the B.Sc. and M.Sc. degrees in Electrical Engineering in 2005 and 2007 from Isfahan University of Technology, and Sharif University of Technology, Iran, respectively. Currently, He is a Ph.D. student in Electrical Engineer-ing Department of University of California, Los Angeles, U.S.A. Nasser Sadati was born in Iran in 1960. He received the B.S. degree from Oklahoma State University, Stillwater, in 1982, and the M.S. and Ph.D. degrees from Cleveland State University, Cleveland, OH, USA, in 1985 and 1989, respectively, all in Electrical Engineering. From 1986 to 1987, he was with the NASA Lewis Research Center, Cleveland, to study the albedo effects on space station solar array. In 1989, he conducted postgraduate research at Case Western Reserve University, Cleveland, OH. Since 1990, he has been with the Sharif University of Technology, Tehran, Iran, where he is currently a Full Professor in the Department of Electrical Engineering, the Head of Control Group, and the Director of the Intelligent Systems Laboratory and the Co-Director of Robotics and Machine Vision Laboratory. He was the first to introduce the subject of fuzzy logic and intelligent control as course work in the universities engineering program in Iran. He has published two books in Persian and over 200 technical papers in peer-reviewed journals and conference proceedings, and is currently working on two more books in English (Intelligent Control of Large-Scale Systems) and Persian (Neural Networks). His research interests include intelligent control and soft computing, large-scale systems, robotics and pattern recognition. Dr. Sadati was the recipient of the Academic Excellence Award for 1998–1999 from the Sharif University of Technology. He is a Founding Member of the Iranian Journal of Fuzzy Systems (IJFS). He is the Founder and Chairman of the First Symposiums on Fuzzy Logic, and Intelligent Control and Soft Computing in Iran. He is the editorial board members of International Journal of Advances in Fuzzy Mathematics (AFM) and the Journal of Iranian Association of Electrical and Electronics Engineers (IAEEE). He also has served as the Co-Chair of the First International Conference on Intelligent and Cognitive Systems (ICICS’96). Dr. Sadati is a Founding Member of the Center of Excellence in Power System Management and Control (CEPSMC), Sharif University of Technology, Tehran, Iran and the Foreign Member of the Institute of Control, Robotics, and Systems (ICROS), Korea. Masoud Karimi Ghartemani received the B.Sc. and M.Sc. in Electrical Engineering in 1993 and 1995 from Isfahan University of Technology, Iran, where he continued to work as a Teaching and Research Assistant until 1998. He received the Ph.D. degree in Electrical Engineering from University of Toronto in 2004. He was a Research Associate and a Post-doctoral Researcher in the Department of Electrical and Computer Engineering of the University of Toronto from 1998 to 2001 and from 2004 to 2005, respectively. He joined Sharif University of Technology, Tehran, Iran, in 2005 as a Faculty Member. His research topics include nonlinear and optimal control, novel control and signal processing techniques/algorithms for control and protection of modern power systems, power electronics, power system stability and control, and power quality.  相似文献   

14.
A robust pinch detection algorithm which can be implemented in a cheap microprocessor is proposed for the development of a safety feature in the automotive power window system. To solve the problems caused by the performance degradation of a Hall sensor or real driving situations, the proposed algorithm makes use of the H state estimation technique. The motivation of this approach comes from the advantage that the H filter can minimize or bound the worst-case estimation error energy for all bounded energy disturbances. Herein, the pinch torque rate estimator is derived from applying the steady-state H filter to the augmented model, which includes the motor dynamics and an additional torque rate state. Then, to redesign an appropriate estimator for real-time implementation, the torque rate estimate can be calculated more efficiently than the previous method [1]. Experimental results verify that, with a small amount of computation, the proposed pinch detection algorithm provides fast pinch detection performance superior to the existing method. Furthermore, it guarantees robustness against the worst-case measurement noises. Recommended by Editorial Board member Young Soo Suh under the direction of Editor Young Il Lee. Jung-Hoon Park received the B.E. degree in Electronic Engineering in 1996, and the M.S. degree in Electrical and Electronic Engineering from Yonsei University, Seoul, Korea, in 2002. He worked with Samsung Electronics as an Engineer from 1996 to 1999. He is currently pursuing his doctoral degree at Yonsei University. His research interests include robust control and filtering theory, robot vision, and its applications. Won-Sang Ra received the B.E., M.S., and Ph.D. degrees in Electrical and Electronics Engineering from Yonsei University, Seoul, Korea, in 1998, 2000, and 2009, respectively. From March 2000 to February 2009, he was with the Guidance and Control Department of Agency for Defense Development, Daejeon, as a Senior Researcher. Since March 2009, he has been with the School of Mechanical and Control Engineering, Handong Global University, where he is currently a Full-Time Instructor. His main research topic includes the robust filtering theory and its applications to autonomous vehicle guidance and control. Tae-Sung Yoon received the B.E., M.S., and Ph.D. degrees, in Electrical Engineering from Yonsei University, Seoul, Korea, in 1978, 1980, and 1988, respectively. He worked with the Department of Electrical Engineering at the 2nd Naval Academy, Jinhae, Korea, as a member of the teaching staff from 1980 to 1983. He worked with the Department of Electrical Engineering at Vanderbilt University, Nashville, as a Visiting Assistant Professor from 1994 to 1995. Since 1989, he has been with the Department of Electrical Engineering, Changwon National University, Changwon, Korea where he is currently a Professor. His research interests include robust filtering, mobile robotics, and time-frequency signal processing in instrumentation. Jin-Bae Park received the B.E. degree in Electrical Engineering from Yonsei University, Seoul, Korea, in 1977, and the M.S. and Ph.D. degrees in Electrical Engineering from Kansas State University, Manhattan, in 1985, and 1990, respectively. Since 1992, he has been with the Department of Electrical and Electronic Engineering, Yonsei University, where he is currently a Professor. His research interests include robust control and filtering, nonlinear control, mobile robotics, fuzzy logic control, neural networks, genetic algorithms, and Hadamard-transform spectroscopy. He has served as the Director for the Transactions of the Korean Institute of Electrical Engineers (1998–2003) and the Institute of Control, Automation, and Systems Engineers (1999–2003). He is currently the Editor-in-Chief for the International Journal of Control, Automation, and Systems.  相似文献   

15.
This paper presents new object-spatial layout-route based hybrid map representation and global localization approaches using a stereo camera. By representing objects as high-level features in a map, a robot can deal more effectively with different contexts such as dynamic environments, human-robot interaction, and semantic information. However, the use of objects alone for map representation has inherent problems. For example, it is difficult to represent empty spaces for robot navigation, and objects are limited to readily recognizable things. One way to overcome these problems is to develop a hybrid map that includes objects and the spatial layout of a local space. The map developed in this research has a hybrid structure that combines a global topological map and a local hybrid map. The topological map represents the spatial relationships between local spaces. The local hybrid map combines the spatial layout of the local space with the objects found in that space. Based on the proposed map, we suggest a novel coarse-to-fine global localization method that uses object recognition, point cloud fitting and probabilistic scan matching. This approach can accurately estimate robot pose with respect to the correct local space. Recommended by Editor Jae-Bok Song. This research was performed for the Intelligent Robotics Development Program, one of the 21st Century Frontier R&D Programs funded by the Ministry of Knowledge Economy of Korea. Soonyong Park received the B.S. and M.S. degrees from the Department of Mechanical Engineering, Kyunghee University, Seoul, Korea, in 2001 and 2003, respectively. He is currently working toward the Ph.D. degree in the Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea. Since 2001, he has been a student researcher in the Center for Cognitive Robotics Research, Korea Institute of Science and Technology (KIST), Seoul, Korea. His research interests include mobile robot navigation and computer vision. Mignon Park received the B.S. and M.S. degrees in Electronics from Yonsei University, Seoul, Korea, in 1973 and 1977, respectively. He received the Ph.D. degree in University of Tokyo, Japan, 1982. He was a researcher with the Institute of Biomedical Engineering, University of Tokyo, Japan, from 1972 to 1982, as well as at the Massachusetts Institute of Technology, Cambridge, and the University of California Berkeley, in 1982. He was a visiting researcher in Robotics Division, Mechanical Engineering Laboratory, Ministry of International Trade and Industry, Tsukuba, Japan, from 1986 to 1987. He has been a Professor in the Department of Electrical and Electronic Engineering in Yonsei University, since 1982. His research interests include fuzzy control and application, robotics, and fuzzy biomedical system. Sung-Kee Park is a principal research scientist for Korea Institute of Science and Technology (KIST). He received the B.S. and M.S. degrees in Mechanical Design and Production Engineering from Seoul National University, Seoul, Korea, in 1987 and 1989, respectively. He received the Ph.D. degree (2000) from Korea Advanced Institue of Science and Technology (KAIST), Korea, in the area of computer vision. Since then, he has been working for the center for cognitive robotics research at KIST. During his period at KIST, he held a visiting position at the Robotics Institute of Carnegie Mellon University in 2005, where he did research on object recognition. His recent work has been on cognitive visual processing, object recognition, visual navigation, and human-robot interaction.  相似文献   

16.
In this paper, we propose a new topology called theDual Torus Network (DTN) which is constructed by adding interleaved edges to a torus. The DTN has many advantages over meshes and tori such as better extendibility, smaller diameter, higher bisection width, and robust link connectivity. The most important property of the DTN is that it can be partitioned into sub-tori of different sizes. This is not possible for mesh and torus-based systems. The DTN is investigated with respect to allocation, embedding, and fault-tolerant embedding. It is shown that the sub-torus allocation problem in the DTN reduces to the sub-mesh allocation problem in the torus. With respect to embedding, it is shown that a topology that can be embedded into a mesh with dilation δ can also be embedded into the DTN with less dilation. In fault-tolerant embedding, a fault-tolerant embedding method based on rotation, column insertion, and column skip is proposed. This method can embed any rectangular grid into its optimal square DTN when the number of faulty nodes is fewer than the number of unused nodes. In conclusion, the DTN is a scalable topology well-suited for massively parallel computation. Sang-Ho Chae, M.S.: He received the B.S. in the Computer Science and Engineering from the Pohang University of Science and Technology (POSTECH) in 1994, and the M.E. in 1996. Since 1996, he works as an Associate Research Engineer in the Central R&D Center of the SK Telecom Co. Ltd. He took part in developing SK Telecom Short Message Server whose subscribers are now over 3.5 million and Advanced Paging System in which he designed and implemented high availability concepts. His research interests are the Fault Tolerance, Parallel Processing, and Parallel Topolgies. Jong Kim, Ph.D.: He received the B.S. degree in Electronic Engineering from Hanyang University, Seoul, Korea, in 1981, the M.S. degree in Computer Science from the Korea Advanced Institute of Science and Technology, Seoul, Korea, in 1983, and the Ph.D. degree in Computer Engineering from Pennsylvania State University, U.S.A., in 1991. He is currently an Associate Professor in the Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. Prior to this appointment, he was a research fellow in the Real-Time Computing Laboratory of the Department of Electrical Engineering and Computer Science at the University of Michigan from 1991 to 1992. From 1983 to 1986, he was a System Engineer in the Korea Securities Computer Corporation, Seoul, Korea. His major areas of interest are Fault-Tolerant Computing, Performance Evaluation, and Parallel and Distributed Computing. Sung Je Hong, Ph.D.: He received the B.S. degree in Electronics Engineering from Seoul National University, Korea, in 1973, the M.S. degree in Computer Science from Iowa State University, Ames, U.S.A., in 1979, and the Ph.D. degree in Computer Science from the University of Illinois, Urbana, U.S.A., in 1983. He is currently a Professor in the Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. From 1983 to 1989, he was a staff member of Corporate Research and Development, General Electric Company, Schenectady, NY, U.S.A. From 1975 to 1976, he was with Oriental Computer Engineering, Korea, as a Logic Design Engineer. His current research interest includes VLSI Design, CAD Algorithms, Testing, and Parallel Processing. Sunggu Lee, Ph.D.: He received the B.S.E.E. degree with highest distinction from the University of Kansas, Lawrence, in 1985 and the M.S.E. and Ph.D. degrees from the University of Michigan, Ann Arbor, in 1987 and 1990, respectively. He is currently an Associate Professor in the Department of Electronic and Electrical Engineering at the Pohang University of Science and Technology (POSTECH), Pohang, Korea. Prior to this appointment, he was an Associate Professor in the Department of Electrical Engineering at the University of Delaware in Newark, Delaware, U.S.A. From June 1997 to July 1998, he spent one year as a Visiting Scientist at the IBM T. J. Watson Research Center. His research interests are in Parallel, Distributed, and Fault-Tolerant Computing. Currently, his main research focus is on the high-level and low-level aspects of Inter-Processor Communications for Parallel Computers.  相似文献   

17.
We propose a novel concept of shape prior for the processing of tubular structures in 3D images. It is based on the notion of an anisotropic area energy and the corresponding geometric gradient flow. The anisotropic area functional incorporates a locally adapted template as a shape prior for tubular vessel structures consisting of elongated, ellipsoidal shape models. The gradient flow for this functional leads to an anisotropic curvature motion model, where the evolution is driven locally in direction of the considered template. The problem is formulated in a level set framework, and a stable and robust method for the identification of the local prior is presented. The resulting algorithm is able to smooth the vessels, pushing solution toward elongated cylinders with round cross sections, while bridging gaps in the underlying raw data. The implementation includes a finite-element scheme for numerical accuracy and a narrow band strategy for computational efficiency. Oliver Nemitz received his Diploma in mathematics from the university of Duisburg, Germany in 2003. Then he started to work on his Ph.D. thesis in Duisburg. Since 2005 he is continuing the work on his Ph.D. project at the Institute for Numerical Simulation at Bonn University. His Ph.D. subject is fast algorithms for image manipulation in 3d, using PDE’s, variational methods, and level set methods. Martin Rumpf received his Ph.D. in mathematics from Bonn University in 1992. He held a postdoctoral research position at Freiburg University. Between 1996 and 2001, he was an associate professor at Bonn University and from 2001 until 2004 full professor at Duisburg University. Since 2004 he is now full professor for numerical mathematics and scientific computing at Bonn University. His research interests are in numerical methods for nonlinear partial differential equations, geometric evolution problems, calculus of variations, adaptive finite element methods, image and surface processing. Tolga Tasdizen received his B.S. degree in Electrical Engineering from Bogazici University, Istanbul in 1995. He received the M.S. and Ph.D. degrees in Engineering from Brown University in 1997 and 2001. From 2001 to 2004 he was a postdoctoral research associate with the Scientific Computing and Imaging Institute at the University of Utah. Since 2004 he has been with the School of Computing at the University of Utah as a research assistant professor. He also holds an adjunct assistant professor position with the Department of Neurology and the Center for Alzheimer’s Care, Imaging and Research, and a research scientist position with the Scientific Computing and Imaging Institute at the University of Utah. Ross Whitaker received his B.S. degree in Electrical Engineering and Computer Science from Princeton University in 1986, earning Summa Cum Laude. From 1986 to 1988 he worked for the Boston Consulting Group, entering the University of North Carolina at Chapel Hill in 1989. At UNC he received the Alumni Scholarship Award, and completed his Ph.D. in Computer Science in 1994. From 1994–1996 he worked at the European Computer-Industry Research Centre in Munich Germany as a research scientist in the User Interaction and Visualization Group. From 1996–2000 he was an Assistant Professor in the Department of Electrical Engineering at the University of Tennessee. He is now an Associate Professor at the University of Utah in the College of Computing and the Scientific Computing and Imaging Institute.  相似文献   

18.
In the area of biometrics, face classification becomes one of the most appealing and commonly used approaches for personal identification. There has been an ongoing quest for designing systems that exhibit high classification rates and portray significant robustness. This feature becomes of paramount relevance when dealing with noisy and uncertain images. The design of face recognition classifiers capable of operating in presence of deteriorated (noise affected) face images requires a careful quantification of deterioration of the existing approaches vis-à-vis anticipated form and levels of image distortion. The objective of this experimental study is to reveal some general relationships characterizing the performance of two commonly used face classifiers (that is Eigenfaces and Fisherfaces) in presence of deteriorated visual information. The findings obtained in our study are crucial to identify at which levels of noise the face classifiers can still be considered valid. Prior knowledge helps us develop adequate face recognition systems. We investigate several typical models of image distortion such as Gaussian noise, salt and pepper, and blurring effect and demonstrate their impact on the performance of the two main types of the classifiers. Several distance models derived from the Minkowski family of distances are investigated with respect to the produced classification rates. The experimental environment concerns a well-known standard in this area of face biometrics such as the FERET database. The study reports on the performance of the classifiers, which is based on a comprehensive suite of experiments and delivers several design hints supporting further developments of face classifiers. Gabriel Jarillo Alvarado obtained his B.Sc. degree in Biomedical Engineering from the Universidad Iberoamericana, Mexico. In 2003 he obtained his M.Sc. degree from the University of Alberta at the Department of Electrical and Computer Engineering, he is currently enrolled in the Ph.D. program at the same University. His research interests involve machine learning, pattern recognition, and evolutionary computation with particular interest to biometrics for personal identification. Witold Pedrycz is a Professor and Canada Research Chair (CRC) in Computational Intelligence) in the Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada. His research interests involve Computational Intelligence, fuzzy modeling, knowledge discovery and data mining, fuzzy control including fuzzy controllers, pattern recognition, knowledge-based neural networks, relational computing, and Software Engineering. He has published numerous papers in this area. He is also an author of 9 research monographs. Witold Pedrycz has been a member of numerous program committees of conferences in the area of fuzzy sets and neurocomputing. He currently serves on editorial board of numereous journals including IEEE Transactions on Systems Man and Cybernetics, Pattern Recognition Letters, IEEE Transactions on Fuzzy Systems, Fuzzy Sets & Systems, and IEEE Transactions on Neural Networks. He is an Editor-in-Chief of Information Sciences. Marek Reformat received his M.Sc. degree from Technical University of Poznan, Poland, and his Ph.D. from University of Manitoba, Canada. His interests were related to simulation and modeling in time-domain, as well as evolutionary computing and its application to optimization problems For three years he worked for the Manitoba HVDC Research Centre, Canada, where he was a member of a simulation software development team. Currently, Marek Reformat is with the Department of Electrical and Computer Engineering at University of Alberta. His research interests lay in the areas of application of Computational Intelligence techniques, such as neuro-fuzzy systems and evolutionary computing, as well as probabilistic and evidence theories to intelligent data analysis leading to translating data into knowledge. He applies these methods to conduct research in the areas of Software and Knowledge Engineering. He has been a member of program committees of several conferences related to Computational Intelligence and evolutionary computing. Keun-Chang Kwak received B.Sc., M.Sc., and Ph.D. degrees in the Department of Electrical Engineering from Chungbuk National University, Cheongju, South Korea, in 1996, 1998, and 2002, respectively. During 2002–2003, he worked as a researcher in the Brain Korea 21 Project Group, Chungbuk National University. His research interests include biometrics, computational intelligence, pattern recognition, and intelligent control.  相似文献   

19.
The Multi-Agent Distributed Goal Satisfaction (MADGS) system facilitates distributed mission planning and execution in complex dynamic environments with a focus on distributed goal planning and satisfaction and mixed-initiative interactions with the human user. By understanding the fundamental technical challenges faced by our commanders on and off the battlefield, we can help ease the burden of decision-making. MADGS lays the foundations for retrieving, analyzing, synthesizing, and disseminating information to commanders. In this paper, we present an overview of the MADGS architecture and discuss the key components that formed our initial prototype and testbed. Eugene Santos, Jr. received the B.S. degree in mathematics and Computer science and the M.S. degree in mathematics (specializing in numerical analysis) from Youngstown State University, Youngstown, OH, in 1985 and 1986, respectively, and the Sc.M. and Ph.D. degrees in computer science from Brown University, Providence, RI, in 1988 and 1992, respectively. He is currently a Professor of Engineering at the Thayer School of Engineering, Dartmouth College, Hanover, NH, and Director of the Distributed Information and Intelligence Analysis Group (DI2AG). Previously, he was faculty at the Air Force Institute of Technology, Wright-Patterson AFB and the University of Connecticut, Storrs, CT. He has over 130 refereed technical publications and specializes in modern statistical and probabilistic methods with applications to intelligent systems, multi-agent systems, uncertain reasoning, planning and optimization, and decision science. Most recently, he has pioneered new research on user and adversarial behavioral modeling. He is an Associate Editor for the IEEE Transactions on Systems, Man, and Cybernetics: Part B and the International Journal of Image and Graphics. Scott DeLoach is currently an Associate Professor in the Department of Computing and Information Sciences at Kansas State University. His current research interests include autonomous cooperative robotics, adaptive multiagent systems, and agent-oriented software engineering. Prior to coming to Kansas State, Dr. DeLoach spent 20 years in the US Air Force, with his last assignment being as an Assistant Professor of Computer Science and Engineering at the Air Force Institute of Technology. Dr. DeLoach received his BS in Computer Engineering from Iowa State University in 1982 and his MS and PhD in Computer Engineering from the Air Force Institute of Technology in 1987 and 1996. Michael T. Cox is a senior scientist in the Intelligent Distributing Computing Department of BBN Technologies, Cambridge, MA. Previous to this position, Dr. Cox was an assistant professor in the Department of Computer Science & Engineering at Wright State University, Dayton, Ohio, where he was the director of Wright State’s Collaboration and Cognition Laboratory. He received his Ph.D. in Computer Science from the Georgia Institute of Technology, Atlanta, in 1996 and his undergraduate from the same in 1986. From 1996 to 1998, he was a postdoctoral fellow in the Computer Science Department at Carnegie Mellon University in Pittsburgh working on the PRODIGY project. His research interests include case-based reasoning, collaborative mixed-initiative planning, intelligent agents, understanding (situation assessment), introspection, and learning. More specifically, he is interested in how goals interact with and influence these broader cognitive processes. His approach to research follows both artificial intelligence and cognitive science directions.  相似文献   

20.
Gait-based human identification aims to discriminate individuals by the way they walk. A unique advantage of gait as a biometric is that it requires no subject contact and is easily acquired at a distance, which stands in contrast to other biometric techniques involving face, fingerprints, iris, etc. This paper proposes a new gait representation called motion energy image (MEI). Compared with other gait features, MEI is more robust against noise that can be included in binary gait silhouette images due to various factors. The effectiveness of the proposed method for gait recognition is demonstrated using experiments performed on the NLPR database. Recommended by Editorial Board member Jang Myung Lee under the direction of Editor Jae-Bok Song. This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the Biometrics Engineering Research Center (BERC) at Yonsei University. Grant Number: R11-2002-105-09002-0 (2009). Heesung Lee received the B.S. and M.S. degrees in Electrical and Electronic Engineering, from Yonsei University, Seoul, Korea, in 2003 and 2005, respectively. He is currently a Ph.D. candidate of Dept. of Electrical and Electronic Engineering at Yonsei University. His current research interests include computational intelligence, pattern recognition, biometrics, and neural network. Sungjun Hong received the B.S. degrees in Electrical and Electronic Engineering and Computer Science, from Yonsei University, Seoul, Korea, in 2005. He is a graduate student of the combined master’s and doctoral degree programs at Yonsei University. He has studied machine learning, biometrics and optimization Imran Fareed Nizami received the B.S. degree from University of Engg. & Tech. Taxila, Pakistan and the M.S. degree in the Electrical and Electronic Engineering from Yonsei University, Seoul, Korea. He is currently a senior lecturer in Bahria University, Islamabad, Pakistan. His research interests include biometrics, gait recognition, Bayesian and neural networks. Euntai Kim received the B.S. (with top honors), M.S. and Ph.D. degrees in Electronic Engineering from Yonsei University, Seoul, Korea, in 1992, 1994, and 1999, respectively. From 1999 to 2002, he was a Full-time Lecturer with the Department of Control and Instrumentation Engineering at Hankyong National University, Gyeonggi-do, Korea. Since 2002, he has been with the School of Electrical and Electronic Engineering at Yonsei University, where he is currently an associate professor. He was a Visiting Scholar with the University of Alberta, Edmonton, Canada, and the Berkeley Initiative in Soft Computing (BISC), UC Berkeley, USA, in 2003 and 2008, respectively. His current research interests include computational intelligence and machine learning and their application to intelligent service robots, unmanned vehicles, home networks, biometrics, and evolvable hardware.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号