首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Park SS  Kim J  Lee Y 《Analytical chemistry》2012,84(3):1792-1796
An amperometric dual NO/CO microsensor was developed on the basis of a working electrode incorporating dual Pt microdisks (each diameter, 76 μm) and a Ag/AgCl reference electrode covered with a gas permeable membrane. One of the Pt disks was sequentially electrodeposited with Pt and Sn; the other Pt disk was deposited with Pt-Fe(III) oxide nanocomposites. The first showed activity for the oxidation of both NO and CO; the second showed activity only for NO oxidation. In the copresence of NO and CO, the currents measured at each electrode, respectively, represented the concentrations of CO and NO. The sensor showed high stability during the monitoring of organ tissue for at least 2.5 h and high selectivity to NO over CO at the Pt-Fe(III) oxide working electrode. Real-time coupled dynamic changes of NO and CO generated by a living C57 mouse kidney were monitored simultaneously and quantitatively in response to a NO synthase inhibitor (N(G)-nitro-l-arginine methyl ester), for the first time. CO was found to increase and NO decreased upon addition of the inhibitor, suggesting a possible reciprocal interaction between these endogenous gases.  相似文献   

2.
An improved miniature amperometric nitric oxide sensor design with a planar sensing tip (ranging from 150 microm to 2 mm in diameter) is reported. The sensor is fabricated using a platinized platinum anode and a Ag/AgCl cathode housed behind a microporous poly(tetrafluoroethylene) (PTFE; Gore-tex) gas-permeable membrane. Platinization of the working platinum electrode surface dramatically improves the analytical performance of the sensor by providing approximately 10-fold higher sensitivity (0.8-1.3 pA/nM), approximately 10-fold lower detection limit (< or =1 nM), and extended (at least 3-fold) stability (>3 d) compared to sensors prepared with bare Pt electrodes. These improvements in performance arise from increasing the kinetics and lowering the required potential for the 3-electron oxidation of NO to nitrate, relative to that observed using a nonplatinized working electrode. The outer porous PTFE membrane provides complete selectivity for NO over nitrite ions (up to 10 mM nitrite). The new sensor is applied for surface measurements of NO released from diazeniumdiolate-loaded silicone rubber films (SR-DACA-6/N(2)O(2)). The effects of sensor size (for sensor dimensions of 0.15-, 1-, and 2-mm o.d.) and the distance of the sensor from the surface of the NO-emitting polymer film are investigated via experiments as well as theoretical calculations. A significant analyte trapping effect is demonstrated, the degree of which depends on the sensor size and its distance from the surface. It is further demonstrated that surface NO concentrations for fresh SR-DACA-6/N(2)O(2) loaded films are also influenced by the polymer film thickness, with thicker films generating higher surface concentrations of NO.  相似文献   

3.
A miniature needle-type sensor suitable for the simultaneous amperometric monitoring of glucose and insulin is described. The integrated microsensor consists of dual (biologically and chemically) modified carbon-paste working electrodes inserted into a 14-guage needle. The glucose probe is based on the biocatalytic action of glucose oxidase, and the insulin one relies on the electrocatalytic activity of ruthenium oxide. The analytical performance of the dual sensor is assessed under flow injection conditions. The needle dual detector exhibits a very rapid response to dynamic changes in the concentrations of glucose and insulin. No apparent cross reactivity is observed in mixtures containing millimolar glucose levels and nanomolar insulin concentrations. The response is highly linear (to at least 1000 nM insulin and 14 mM glucose) and reproducible (RSD = 2.6-4.1%). The combination microsensor holds great promise for real-time measurements of the insulin/glucose ratio and for improved management of diabetes.  相似文献   

4.
Nitric oxide (NO) is a ubiquitous biomolecule that is known as a signaling compound in eukaryotes and prokaryotes. In addition, NO is involved in all conversions of the biogeochemical nitrogen cycle: denitrification, nitrification, and the anaerobic oxidation of ammonium (Anammox). Until now, NO has not been measured with high spatial resolution within microbial communities, such as biofilms, sediments, aggregates, or microbial mats, because the available sensors are not robust enough and their spatial resolution is insufficient. Here we describe the fabrication and application of a novel Clark-type NO microsensor with an internal reference electrode and a guard anode. The NO microsensor has a spatial resolution of 60-80 microm, a sensitivity of 2 pA microM-1, and a detection limit of approximately 30 nM. Hydrogen sulfide (H2S) was found to be a major interfering compound for the electrochemical detection of NO. The application of the novel NO microsensor to nitrifying biofilms and marine sediments revealed dynamic NO concentration profiles with peaks in the oxic parts of the samples. The local concentrations suggested that NO may be an important bioactive compound in natural environments. The consumption and production of NO occurs in separate regions of stratified microbial communities and indicates that it is linked to distinct biogeochemical cycles.  相似文献   

5.
《IEEE sensors journal》2008,8(11):1922-1927
CMOS integrable nonenzymatic glucose microsensors with nanoporous platinum (Pt) working and counter electrode (WE/CE) were first fabricated, packaged, and characterized with biocompatible Nafion and hydrophilic polyurethane (HPU) membrane materials. Optimal packaging material and its processing condition for these nonenzymatic sensors were investigated. The optimally packaged glucose microsensor was evaluated in human blood plasma solution for checking its biocompatibility and commercial applicability. The fabricated microsensors with nanoporous Pt WE/CE had a sensitivity of 7.75 $mu$A mM $^{-1}$ cm $^{- 2}$. The packaged microsensor with Nafion membrane had better performance characteristics than packaged one with HPU. The packaged microsensor with 1:6 ratio of Nafion to ethanol exhibited a sensitivity of 0.83 $mu$ A mM$^{- 1}$ cm$^{-2}$ and stable current change in the human blood plasma solution, while the current response of nonpackaged microsensor was rapidly saturated because adsorption of various proteins and cells as expected. These data indicate that the packaged nonenzymatic microsensor with biocompatible Nafion membrane is promising and strongly applicable for in vitro and in vivo glucose monitoring systems.   相似文献   

6.
Xiong W  Kale GM 《Analytical chemistry》2007,79(10):3561-3567
A novel solid-state electrochemical sensor using (Sc2O3)0.08(ZrO2)0.92 (ScSZ) electrolyte solid and a NiFe1.9Al0.1O4 oxide spinel electrode was tested for the detection of NO2 at temperatures greater than 700 degrees C for automobile applications. The sensor was found to respond rapidly, reproducibly, and selectively to NO2 at 703 and 740 degrees C. The response time of the sensor was approximately 8 s, and the recovery time was 10 s at both 703 and 741 degrees C. The response of the sensor was highly reproducible to the change in concentration of NO2 and also showed negligible cross-sensitivity to potentially interfering gases such as O2, CO, and CH4 in the gas stream.  相似文献   

7.
Biochemical sensors for continuous monitoring require dependable periodic self diagnosis with acceptable simplicity to check its functionality during operation. An in-situ self-diagnostic technique for a dissolved oxygen microsensor is proposed in an effort to devise an intelligent microsensor system with an integrated electrochemical actuation electrode. With a built-in platinum microelectrode that surrounds the microsensor, two kinds of microenvironments, called the oxygen-saturated or oxygen-depleted phases, can be created by water electrolysis, depending on the polarity. The functionality of the microsensor can be checked during these microenvironment phases. The polarographic oxygen microsensor is fabricated on a flexible polyimide substrate (Kapton) and the feasibility of the proposed concept is demonstrated in a physiological solution. The sensor responds properly during the oxygen-generating and oxygen-depleting phases. The use of these microenvironments for in-situ self-calibration is discussed to achieve functional integration, as well as structural integration, of the microsensor system.  相似文献   

8.
An amperometric sol-gel derived nitric oxide microsensor is described. Several silicon-based xerogel membranes are evaluated to identify the optimum composition for maximizing NO permeability while providing sufficient selectivity for NO in the presence of common interfering species. Xerogel permeability and selectivity are further manipulated as a function of reaction/processing conditions. In addition, the effects of incorporating Nafion into the xerogel matrix on sensor performance and the stability of the ensuing xerogel/Nafion hybrid film are evaluated. The optimal permselective membrane is achieved by catalyzing polycondensation of the xerogel composed of methyltrimethoxysilane and (aminoethylaminomethyl)phenethyltrimethoxysilane and Nafion with NO gas. The resulting NO microsensor exhibits a sensitivity of 0.17 +/-0.02 pA/nM (from 25 to 800 nM, r = 0.9991), detection limit of 25 nM (S/N = 3), response time of 9 s (t(95%), a NO concentration change from 400 to 500 nM), selectivity (log K(NOj) amp) of -5.8, <-6, <-6, and <-6 for j = nitrite, ascorbic acid, uric acid, and acetaminophen, and a lifetime of 8 d (82% of initial sensitivity without serious deterioration in selectivity).  相似文献   

9.
近年来,微传感器受到国际传感技术界的广泛关注,本文介绍十多个微传感器,包括三轴加速度计,单,双轴加速度计片,表面微机械陀螺(角速度传感器),微惯性导航系统,微磁通门传感器,磁阻传感器,纳米皮拉尼压力传感器,微科氏质量流量计,毫米波图像传感器,GPS手表(1cm^3),二氧化碳传感器和微/超微角位移传感器,文事简要介绍它们的基本结构。敏感机理,特点等,从中可以看出微传感器已成为传感技术中有重要应用前景的组成部分。  相似文献   

10.
Carbon monoxide (CO) gas sensors operating at room temperature were fabricated using rutile tin oxide and hexachloro-platinic acid to get a high dispersion rate of platinum in the tin oxide. The sensor material was analyzed by EDS, TG/DTA, SEM and FTIR. The number of chemisorbed atom per unit area and sensor sensitivity were related by space charge model. Gas sensing characteristics were investigated as a function of Pt content, heat-treatment temperature and operating temperature. The humidity dependence of the fabricated sensors is also discussed.  相似文献   

11.
The development of an interband cascade laser (ICL) based spectroscopic trace-gas sensor for the simultaneous detection of two atmospheric trace gases is reported. The sensor performance was evaluated using two ICLs capable of targeting formaldehyde (H2CO) and ethane (C2H6). Minimum detection limits of 3.5 ppbV for H2CO and 150 pptV for C2H6 was demonstrated with a 1 s integration time. The sensor was deployed for field measurements of H2CO, and laboratory quantification of both formaldehyde and ethane are reported. A cross comparison of the atmospheric concentration data for H2CO with data collected by a collocated commercial H2CO sensor employing Hantzsch reaction based fluorometric detection was performed.These results show excellent agreement between these two different approaches for trace-gas quantification. In addition, laboratory experiments for dual gas quantification show accurate, fast response with no crosstalk between the two gas channels.  相似文献   

12.
We report herein an attenuated total reflectance (ATR) absorbance-based spectroelectrochemical sensor for tris(2,2'-bipyridyl)ruthenium(II) ion [Ru(bpy)(3)(2+)] that employs ultrathin (24-50 nm) Nafion films as the charge-selective layer. This film serves to sequester and preconcentrate the analyte at the optically transparent electrode surface such that it can be efficiently detected optically via electrochemical modulation. Our studies indicate that use of ultrathin films in tandem with continuous flow of sample solution through the cell compartment leads to a 100-500-fold enhancement in detection limit (10 nM) compared to earlier absorbance-based spectroelectrochemical sensors ( approximately 1-5 microM); markedly shorter analysis times also result. We report the dependence of the measured absorbance on sample flow rate and Nafion film thickness, and also provide calibration curves that illustrate the linear range and detection limits of the sensor using a 24 nm film at a constant sample flow rate of 0.07 mL/min.  相似文献   

13.
Cserey A  Gratzl M 《Analytical chemistry》2001,73(16):3965-3974
Despite the multifaceted biomedical significance of NO, little progress has been achieved so far in the quantitative understanding of the signal transduction mechanisms where NO is involved. To help progress in this area, we propose a simple electrochemical NO sensor here, consisting of a glass sealed platinum microdisk electrode coated with cellulose acetate to reduce both surface fouling by proteins and response to potential interferences. A differential amperometry protocol is optimized to improve selectivity and provide a stationary oxidation state of the platinum surface, which prevents loss in sensitivity during long-term use. We found the oxidation of NO by O2 second order in [NO] with a rate constant of (8.0 +/- 0.4) x 10(6) M(-2) s(-1), in good agreement with literature data obtained by other than electrochemical methods. The release rates of NO detected in cultures of activated macrophages were on the order of 20 pmol/ (10(6)cells s) and correlated well with the nitrite content determined by the spectrophotometric Griess assay.  相似文献   

14.
Microwave discharges at 2.45 GHz frequency and accelerated electron beams operated at atmospheric pressure in synthetic gas mixtures containing N(2), O(2), CO(2), SO(2), and NO(x) are investigated experimentally for various gas mixture constituents and operating conditions, with respect to their ability to purify exhaust gases. An original experimental unit easily adaptable for both separate and simultaneous irradiation with microwaves and electron beams was set up. The simultaneous treatment with accelerated electron beams and microwaves was found to increase the removal efficiency of NO(x) and SO(2) and also helped to reduce the total required dose rate with approximately 30%. Concomitant removal of NO(x) ( approximately 80%) and SO(2) (>95%) by precipitation with ammonia was achieved.  相似文献   

15.
Li X  Kale GM 《Analytical chemistry》2007,79(23):8940-8946
The dense (Ba(x)La(1-x)(2))In(2)O(5+x) electrolytes with different compositions (x = 0.4, 0.5, 0.6) were synthesized by Pechini method. The obtained sintered (Ba(x)La(1-x)(2))In(2)O(5+x) electrolytes showed a high relative density of approximately 98%, and the major phase of three electrolyte compositions was indexed as a cubic phase. The CO sensing properties of as-fabricated planar-type (Ba(x)La(1-x)(2))In(2)O(5+x)-based sensors coupled with ITO and Pt as the sensing electrode and reference electrode, respectively, were investigated. The effects of factors such as gas flow rate, chemical compositions, and density of the electrolytes on the sensing performance were investigated. The sensors showed good sensitivity to different concentrations of CO from approximately 100 to approximately 500 ppm and excellent selectivity over low concentrations of methane (<500 ppm). Linear relationships between emf of the sensors and CO gas concentrations from approximately 100 to approximately 400 ppm were observed. However, the sensors indicated more sluggish response compared with the sensors coupled with a corresponding porous electrolyte. The probable reason has been discussed. The long-term stability of the sensor for the detection of CO was also investigated, which indicated a reasonably stable sensor signal after an initial decline during the incubation period.  相似文献   

16.
Dye sensitized solar cells (DSSC) with surface modified carbon fiber fabric (CF) counter electrodes were prepared and tested. Four different type of CF were used; carbon fiber (CF); carbon fiber etched with NaOH (ECF); carbon fiber with thermally deposited platinum (CFPt); and carbon fiber etched with NaOH followed by thermal deposition of platinum (ECFPt). For comparison, DSSC with thermally Pt deposited fluorine doped tin oxide (FTO/Pt) glass counter electrode was also prepared and tested. Scanning electron microscope (SEM) proved that surface morphology of the carbon fiber was roughened by the etching process and platinum deposition process. The I-V curves of each DSSC were measured under simulated light (1 Sun, AM 1.5) to get open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF) and efficiency (eta). Electrochemical impedance spectroscopy of each cell was measured also. It was found that higher efficiency is obtained in order of using ECFPt > CFPt > FTO/Pt > ECF > CF counter electrode.  相似文献   

17.
An amperometric fluorinated xerogel-derived nitric oxide (NO) microelectrode is described. A range of fluorine-modified xerogel polymers were synthesized via the cohydrolysis and condensation of alkylalkoxy- and fluoroalkoxysilanes. Such polymers were evaluated as NO sensor membranes to identify the optimum composition for maximizing NO permeability while providing sufficient selectivity for NO in the presence of common interfering species. By taking advantage of both the versatility of sol-gel chemistry and the "poly(tetrafluoroethylene)-like" high NO permselective properties of the xerogels, the performance of the fluorinated xerogel-derived sensors was excellent, surpassing all miniaturized NO sensors reported to date. In contrast to previous electrochemical NO sensor designs, xerogel-based NO microsensors were fabricated using a simple, reliable dip-coating procedure. An optimal permselective membrane was achieved by synthesizing xerogels of methyltrimethoxysilane (MTMOS) and 20% (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (17FTMS, balance MTMOS) under acid-catalyzed conditions. The resulting NO microelectrode had a conical tip of approximately 20 microm in diameter and approximately 55 microm in length and exhibited sensitivities of 7.91 pA x nM (-1) from 0.2 to 3.0 nM (R (2) = 0.9947) and 7.60 nA x microM (-1) from 0.5 to 4.0 microM ( R (2) = 0.9999), detection limit of 83 pM (S/ N = 3), response time ( t 95%) of <3 s, and selectivity (log K NO, j (amp)) of -5.74, <-6, <-6, <-6, <-6, -5.84, and -1.33 for j = nitrite, ascorbic acid, uric acid, acetaminophen, dopamine, ammonia/ammonium, and carbon monoxide. In addition, the sensor proved functional up to 20 d, maintaining >or=90% of the sensor's initial sensitivity without serious deterioration in selectivity.  相似文献   

18.
Nitric oxide-releasing sol-gel particle/polyurethane glucose biosensors   总被引:1,自引:0,他引:1  
A hybrid sol-gel/polyurethane glucose biosensor that releases nitric oxide is developed and characterized. The biosensor consists of a platinum electrode coated with four polymeric membranes including the following: (1) sol-gel with immobilized glucose oxidase (GOx); (2) polyurethane to protect the enzyme; (3) NO donor-modified sol-gel particle-doped polyurethane; and (4) polyurethane. This configuration was developed due to the drastic reduction in sensitivity observed for NO donor-modified sol-gel film-based glucose sensors. For the hybrid sol-gel/polyurethane biosensor, sol-gel particles are first modified with the NO donor and then incorporated into a polyurethane layer that is coated onto the preimmobilized GOx electrode. In this manner, the GOx layer is not exposed to the harsh conditions necessary to impart NO release ability to the biosensor, and only a minimal decrease in sensitivity due to the NO release is observed. The glucose response of the NO-releasing glucose biosensor and its NO generation profiles are reported. In addition, the stability of the sol-gel particles in the supporting polyurethane membrane is discussed.  相似文献   

19.
Further studies are reported on a novel room temperature tin oxide–platinum sensor for carbon monoxide (CO). The expected porous nature has been confirmed by scanning electron microscope pictures of these sensors. Pore sizes were 0.1–10 μm. Recovery studies confirm that high resistance sensors recover more quickly. During the recovery a second fire can be detected and there are no signs of self-poisoning by CO. Preliminary results are presented for temperature and humidity cycling.  相似文献   

20.
Although tin oxide has been the most widely investigated metal oxide material for gas detection, it suffers from the large resistance and high operating temperature. This could be overcome by hybridization with nanostructured carbon. In this work, tin oxide nanoparticles with ultrasmall sizes of 1-3 nm have been uniformly coated onto bundles of single-walled carbon nanotubes by a surfactant assisted solid state synthesis approach for the first time. Gas sensor properties of the as-synthesized nanocomposite material toward NO2 (from 5 to 60 ppm) are measured at 150 degrees C. Compared to the pure carbon tubes gas sensors, the nanocomposite gas sensor responds to NO2 in low concentrations with good linearity, high sensitivity, and fast recovery, while working at a relatively low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号