首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bulk metallic glasses for biomedical applications   总被引:1,自引:0,他引:1  
The selection criteria for biomaterials include the material’s properties and biocompatibility, and the ability to fabricate the desired shapes. Bulk metallic glasses (BMGs) are relative newcomers in the field of biomaterials but they exhibit an excellent combination of properties and processing capabilities desired for versatile implant applications. To further evaluate the suitability of BMGs for biomedical applications, we analyzed the biological responses they elicited in vitro and in vivo. The BMGs promoted cell adhesion and growth in vitro and induced improved foreign body responses in vivo suggesting their potential use as biomaterials. Because of the BMGs’ flexible chemistry, atomic structure, and surface topography, they offer a unique opportunity to fabricate complex implants and devices with a desirable biological response from a material with superior properties over currently used metallic biomaterials.  相似文献   

2.
3.
The glass forming ability, thermal and mechanical properties of some ZrCuAlNi bulk metallic glasses were analyzed. The compositions of the alloys were theoretically determined with the dense packing and kinetic fragility index models. Cylindrical and conical ingots were produced by copper mould suction-casting under Ar atmosphere. The conical ingots were characterized by means of X-ray diffraction in order to determine the glassy structure. It was found that both alloys have a critical glassy diameter, Dc, of 3 mm. Thermal behaviours were investigated by differential scanning calorimetry at heating rates of 0.5, 0.67 and 0.83 K/s. The gamma parameter γ, supercooled liquid region ΔTx, and reduced glass transition temperature Trg, of the experimentally obtained glasses indicated high glass forming ability. The glassy compositions showed a fragility index of ~40 GPa. The compression test of the investigated alloys was carried out at a strain rate of 0.016 s?1, obtaining a elastic modulus of ~83 GPa, total deformation of ~5%, yield strength of 1.6 GPa and hardness of 4 GPa. It was concluded that the use of the dense packing and kinetic fragility index models helped to predict glass-forming compositions in the family alloy investigated.  相似文献   

4.
Metallic glasses(MG)represent an interesting group of materials as they possess outstanding physical,chemical and mechanical properties compared to their crystalline counterparts.This paper reviews the synergistic influence of Ni and Nb elements on thermal stability of supercooled liquid and corrosion resistance of as-cast Cu-Zr(Hf)-Ti-Ni-Nb bulk metallic glasses(BMGs).Additionally,in-situ second phase reinforced Cu-based BMG composites with high corrosion resistance and excellent mechanical properties are investigated.On the other hand,this paper reports the development of ultra-high corrosion resistant Ni-based metallic glasses at high temperatures for their potential applications.Corrosion resistance and XPS analysis of the Nifree Ti-based BMG are also introduced.  相似文献   

5.
A new series of Co80−xMoxP14B6 (x = 7, 9, and 11 at%) bulk glassy alloys were successfully prepared by a combination method of fluxing treatment and J-quenching technique. The glass-forming ability (GFA) of the obtained Co-based alloys is sensitive to the Mo content substituted for Co, and the maximum attainable diameter for a fully amorphous state can reach 4.5 mm at x = 9. The compressive tests show that the obtained Co-based BMGs exhibit a compressive strength of 3.3–3.9 GPa, but nearly zero compressive plasticity. The new Co-based BMGs possess good soft magnetic properties, and their saturated magnetization values decrease from 47 emu/g (0.45 T) to 14 emu/g (0.14 T) with increasing the content of the Co substitute from 7 at% to 11 at%, which may be attributed to the anti-ferromagnetic coupling between the Mo and Co atoms. Because of their good GFA, high Co content, few constituting elements, and relatively high strength, the obtained Co-based BMGs (especially Co71Mo9P14B6 BMG) can be considered promising as starting alloys to develop the new Co-based BMGs for the advanced structural and functional applications.  相似文献   

6.
Zr49Cu46Al5 and Zr48.5Cu46.5Al5 bulk metallic glasses(BMGs) with diameter of 5 mm were prepared through water-cooled copper mold casting. The phase structures of the two alloys were identified by X-ray diffractometry(XRD). The thermal stability was examined by differential scanning calorimetry(DSC). Zr49Cu46Al5 alloy shows a glass transition temperature, Tg, of about 689 K, an crystallization temperature, Tx, of about 736 K. The Zr48.5Cu46.5Al5 alloy shows no obvious exothermic peak. The microstructure of the as-cast alloys was analyzed by transmission electron microscopy(TEM). The aggregations of CuZr and CuZr2 nanocrystals with grain size of about 20 nm are observed in Zr49Cu46Al5 nanocrystalline composite, while the Zr48.5Cu46,5Al5 alloy containing many CuZr martensite plates is crystallized seriously. Mechanical properties of bulk Zr49Cu46Al5 nanocrystalline composite and Zr48.5Cu46.5Al5 alloy measured by compression tests at room temperature show that the work hardening ability of Zr48.5Cu46.5A15 alloy is larger than that of Zr49Cu46Al5 alloy.  相似文献   

7.
《Scripta materialia》2001,44(8-9):1649-1654
Zr-Cu-Ni-Al belongs to the best glass forming systems known; these glasses are suitable as precursor material for nanocrystalline alloys. For an application as hydrogen storage materials for example it is of great interest to know more about these metastable materials in regard to their environmental properties. Corrosion as studied by a salt spray test or anodic polarization in aqueous solutions exhibit a rather high sensitivity with no significant differences between the amorphous and nanocrystalline state. Hydrogen charging was performed electrochemically in a glycerine-phosphoric acid electrolyte. In Zr-Cu-Ni-Al alloys absorption kinetics and storage capacity were found to be very similar for the amorphous and the nanocrystalline phase. In the nanocrystalline alloy consisting mainly of a fcc (big cube) phase with a NiTi2 type structure a hydrogen induced amorphization was observed. Oxidation of metastable Zr-based materials in air was studied below the glass transition temperature at 360°C by thermogravimetry. Oxidation resistance was found to improve very significantly from the amorphous to the nanocrystalline microstructure. The scales formed on both materials consist mainly of columnar ZrO2 with diameter in the nanometer range; Probably including the other metals as a nanocrystalline solid solution.  相似文献   

8.
Zr基和Ti基块体非晶合金的电化学腐蚀性能(英文)   总被引:1,自引:0,他引:1  
用电化学方法研究Ti基和Zr基非晶合金及与非晶成分相同的Zr基晶态合金在1mol/LH2SO4和3.5%NaCl溶液中的腐蚀行为。极化曲线测试结果表明:在H2SO4溶液中,Zr基非晶和晶态合金自腐蚀电位比Ti基非晶合金的低;在NaCl溶液中,Zr基晶态合金的自腐蚀电位最低,而且在腐蚀过程中没有发生钝化,然而非晶合金都表现出钝化特性。交流阻抗测试结果表明:在NaCl溶液中非晶合金比晶态合金表现出更好的耐腐蚀性能,但是在H2SO4溶液中并没看到它们之间有明显的区别。表面形貌分析表明:在NaCl溶液中,这2种非晶合金都发生点蚀,而在H2SO4溶液中所有试验合金都表现出类似的特征,试样表面基本保持平整,只是在腐蚀表面的局部区域有一些裂纹出现。  相似文献   

9.
Bulk metallic glasses (BMGs) with compositions of Gd55CoxAl45−x (15 ≤ x ≤ 30) and Gd60CoyAl40−y (15 ≤ y ≤ 30) were synthesized by an injection casting technique. Temperature dependence of magnetization of the BMGs indicates that their Curie temperatures can be tailored between 96 and 143 K by varying Gd and Co concentration. The magnetic entropy changes of the BMGs are greater than 9.0 J/kg K except for the Gd55Co30Al15 glass that exhibits a reduced magnetization due to its large Co content. The relative cooling powers of the BMGs are greater than those of any other crystalline compounds and decrease with the increasing Co content.  相似文献   

10.
Glass formation and mechanical properties of Zr–Al–Co–Cu–Ag bulk metallic glasses (BMGs) were investigated. The glass-forming ability (GFA) of Zr55Al20Co20Cu5 alloy is significantly improved with minor addition of Ag, indicating by the impressive increase of the critical diameter of glass formation from 5 mm for Zr55Al20Co20Cu5 to 16 mm for (Zr0.55Al0.20Co0.20Cu0.05)97Ag3 and (Zr0.55Al0.20Co0.20Cu0.05)95Ag5 alloys. The Zr–Al–Co–Cu–Ag BMGs exhibit high compressive strength of 2160–2280 MPa and distinct plasticity of 0.6–2.5%. The Zr-based BMGs with outstanding GFA and mechanical properties as well as low-level cytotoxicity elements are expectative for industrial and biological applications.  相似文献   

11.
In this study, the application of a Ni-free Zr60.14Cu22.31Fe4.85Al9.7Ag3 thin film metallic glass (TFMG) was examined as an approach to retard the poor tribological properties of Ti-alloys for dental applications. The TFMGs were coated on biomedical Ti6Al4V substrate by single-target magnetron sputtering. The fretting resistance was assessed using a reciprocating tribo-tester against Si3N4 counterpart in air and in artificial saliva. Bio-corrosion resistance of TFMG-coated Ti6Al4V samples was tested via electrochemical polarizations and electrochemical impedance spectroscopy in artificial saliva. Biocompatibility of the TFMG was tested in vitro, in comparison with that of the Ti6Al4V alloy. The results showed that this TFMG not only possessed 1.8–2.8 times higher fretting resistance than the Ti6Al4V alloy under various tribological conditions, but also lower bio-corrosion rate and superior passive film. In-vitro assessments of cytotoxicity and cell adhesion indicated that the TFMG has no any cytotoxicity and well-flattened cell adhesion morphology, as good as the Ti6Al4V alloy. The present Ni-free Zr-based TFMG is expected to improve the lifetime and quality of biomedical implants or devices for dental applications.  相似文献   

12.
The thermomechanical behavior of precious based metallic glasses has been investigated. Their compositions are free of nickel for biocompatibility. The gold-based BMG has a gold content resulting in 18 Karats alloy, a supercooled liquid region of 43 °C and a casting diameter up to 5 mm in rod. The compositions of platinum and palladium based BMGs are interesting as they can be formed into bulk glassy rods with diameter up to 15 and 30 mm respectively. The platinum-based BMG has a platinum content resulting in 850 Pt grade with a supercooling region reaching 58 °C. The palladium-based BMG is principally composed of 40 wt.% palladium and 32 wt.% platinum, with a large supercooling region reaching 73 °C.The thermoplastic deformation of these BMG has been examined using thermomechanical analyser (TMA) and the results show that the alloys can be easily processed in the supercooled liquid region. During thermal processing, crystallization must be controlled since it improves hardness and elastic modulus, but embrittles the alloys and stops the deformation. The high hardness of Au-, Pt- and Pd- base BMGs (respectively 340, 420, 460 HV) twice the value of conventional precious metals, coupled with good properties for superplastic forming in the supercooled liquid region made them promising materials for watch making and jewelry applications.  相似文献   

13.
In this article, the formation of metallic glass composites in the system Zr/Ti-Al-Cu-Ni by partial devitrification or by blending with second-phase particles through solid-state processing is discussed with respect to the effect of second phases on the thermal stability of the glassy matrix and on mechanical properties. The composites exhibit no significant reduction of the supercooled liquid region as compared to the particle-free metallic glass. The viscosity of the supercooled liquid increases with an increasing volume fraction of particles. The mechanical behavior was characterized by microhardness measurements and constant compression rate tests. At room temperature, there is a significant increase in yield strength with an increasing volume fraction of crystalline phases. At temperatures around the glass transition, the influence of these nanoscaled particles is of minor importance. Rather, the homogeneous flow of the composites is determined by Newtonian viscous flow of the amorphous matrix. This opens a promising route for easy shaping of complex parts of bulk metallic glasses at temperatures that are above Tg. For more information, contact J.H. Ecker, IFW Dresden, Institute of Metallic Materials, P.O., Box 27 00 16, Dresden D-01171, Germany; telephone 49-351-4659-602; fax 49-351-4659-541; e-mail j.eckert@ifw-dresden.de.  相似文献   

14.
Cu基块状非晶晶化过程的微区变形及力学性能   总被引:1,自引:0,他引:1  
在玻璃转变温度以下选择350、400、475及600 K进行1 h的等温退火,用纳米压痕仪、扫描电镜等研究Cu基块状非晶晶化过程的力学性能及变形。Cu基块状非晶在纳米压头作用下体现弹-塑性变形方式,载荷—位移曲线和压痕周边多重剪切带的特征证明了塑性变形的存在。350 K退火试样具有较大的压痕硬度HV和弹性模量E值及较小的塑性变形量dn值;400 K退火后,HV和E值显著减小,dn值明显增大;475 K退火后,有少量晶体相析出,但合金以非晶的特性为主,HV和E值继续减小,dn值继续增大;600 K退火后,晶体相进一步长大和析出,其固溶强化和弥散强化使合金的HV和E值有所增加,dn值略有减小。对塑性变形机理进行了初步分析。  相似文献   

15.
本文基于“二元共晶混合”法设计Ti-Cu-Ni-Zr合金成分,通过水冷铜模铸造法制备出不同直径Ti-Cu-Ni-Zr合金棒。利用X射线衍射仪(XRD)、差示扫描量热仪(DSC)、万能试验机和扫描电镜(SEM)研究了Ti-Cu-Ni-Zr合金玻璃形成能力和力学性能。结果表明,Ti-Cu-Ni-Zr合金具有较高的玻璃形成能力,其临界直径可达4 mm;Ti-Cu-Ni-Zr合金玻璃形成能力近似相等,而表征玻璃形成能力的热力学参数过冷液相区ΔTx,参数γ,约化玻璃转变温度Trg也近似相等。通过对合金力学性能进行研究,结果表明,Ti32.3Cu47.6Ni7.9Zr12.2和Ti31.6Cu48.2Ni7.7Zr12.5大块非晶合金分别具有0.7%和0.2%的塑性,而Ti30Cu49.5Ni7.2Zr13.3和Ti28.55Cu50.7Ni6.75Zr14大块非晶合金断裂机制近似为脆性断裂。Ti-Cu-Ni-Zr大块非晶合金塑性越大,其剪切带数量越多且扩展深度越大,反之亦然。另外,对于塑性材料,当锯齿流变振幅越大时,对应样品表面剪切带扩展深度越明显,当锯齿流变振幅越小时,对应样品表面剪切带扩展深度较浅;近似脆性断裂的锯齿流变对应次剪切带萌生,而对于完全脆性大块非晶合金,在应力-应变曲线上并未发现锯齿流变现象,相应的在样品外表面也并未发现次剪切带。  相似文献   

16.
Zr基大块非晶合金的微区变形及力学性能   总被引:1,自引:2,他引:1  
利用纳米压痕仪、扫描电镜等研究了Zr基大块非晶合金在纳米压痕条件下的变形及力学性能。Zr基大块非晶合金在纳米压头作用下以弹性-塑性方式变形,载荷-位移曲线及压痕周边多重剪切带(堆起或波纹状)的特征证明了塑性变形的存在。冷却速度、第二相及退火等因素影响非晶合金的压痕硬度HV和弹性模量E,冷却速度小的试样或部位(如试样中心)的HV,E值略高;离第二相(W丝)越近,HV,E值越高;退火处理提高非晶的HV,E值,同时退火与第二相还明显改变压痕周边的变形状态及塑性变形量的大小,退火显著减小塑性变形量,使压痕周边凹陷,而第二相使压痕堆起消失。对塑性变形机理进行了初步分析。  相似文献   

17.
研究Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5)大块金属玻璃的热稳定性、晶化行为、维氏硬度和磁性能.通过铜模铸造法制备Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5)大块金属玻璃.利用差示扫描量热法和等温热处理法研究这些金属玻璃的热稳定性和晶化行为.在室温下利用维氏硬度计测量试样经过不同温度和时间退火后的硬度,并对它们的磁学性质进行表征.实验结果表明,少量Ni元素的加入没有增大过冷液相区间和玻璃形成能力,但是改变合金的初始晶化行为,增大晶化激活能.少量Ni元素的加入能够细化最终晶化组织中的晶粒大小.初晶相使合金的硬度降低,但随着热处理温度的升高,所有合金的硬度都明显提高,原因是析出了大量的碳化物和硼化物.退火温度对合金的磁性能有很大影响,少量Ni元素的加入阻止了合金在高温退火后从顺磁态向铁磁态的转变.  相似文献   

18.
《Intermetallics》2007,15(9):1208-1216
We report a combinatorial sputtering approach for synthesizing ternary metallic glass alloys on both silicon and sapphire substrates. ZrCuAl metallic-glass thin films were co-deposited using a multi-source radio-frequency magnetron-sputtering process. The combinatorial synthesis process yields a wide range of compositions via a single co-sputter deposition process. The compositions of the films were characterized by the energy-dispersive X-ray spectroscopy (EDS), and the structure of the ZrCuAl alloy thin films was investigated by the X-ray diffraction (XRD). Thorough phase analyses indicated the phases present in the films at different compositions were in good agreement with the binary Zr–Cu phase diagram. Nanoindentation results showed that mechanical properties of the bulk-metallic glasses (BMGs) thin film, such as elastic modulus and hardness, are functions of the Zr (or Cu) concentration. The composition with a moderate Zr content (45 atomic percent (at.%)) resulted in a high film modulus and hardness. The post anneal treatment increased the film elastic modulus and hardness. Small additions of aluminum slightly enhanced the film mechanical properties. Using this combinatorial technique could facilitate the development of the new multi-element metallic-glass alloy, particularly for systems with many elements. The first attempt of casting the optimum resultant ternary BMGs rod was successful.  相似文献   

19.
20.
The effect of quasi-static compressive stress on the elastic moduli and mechanical properties of a Cu46Zr46Al8 bulk metallic glass (BMG) was investigated. When the applied quasi-static stress is below 2 GPa (equivalent to 1.4 times the yield strength of the BMG), the elastic moduli of the deformed BMGs are found to decrease with the applied stress, revealing the softening or dilatation of the bulk metallic glass. The Poisson ratio is relatively stable when the stress is below 1000 MPa, but it decreases significantly afterwards. Both the plasticity and strength of the BMG are found to increase at low applied stress, and achieve a maximum value before decreasing at higher applied stress. The applied stress is shown to enhance the mechanical properties of the BMG and the properties can be controlled by quasi-static compressive stress. The results demonstrate that an applied stress far below the macroscopic yield strength can still result in microscopic yielding and microstructure change in metallic glass systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号