首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In support of the effort to begin high-dose rate 252Cf brachytherapy treatments at Tufts-New England Medical Center, the shielding capabilities of a clinical accelerator vault against the neutron and photon emissions from a 1.124 mg 252Cf source were examined. Outside the clinical accelerator vault, the fast neutron dose equivalent rate was below the lower limit of detection of a CR-39 etched track detector and below 0.14 +/- 0.02 muSv h(-1) with a proportional counter, which is consistent, within the uncertainties, with natural background. The photon dose equivalent rate was also measured to be below background levels (0.1 muSv h(-1)) using an ionisation chamber and an optically stimulated luminescence dosemeter. A Monte Carlo simulation of neutron transport through the accelerator vault was performed to validate measured values and determine the thermal-energy to low-energy neutron component. Monte Carlo results showed that the dose equivalent rate from fast neutrons was reduced by a factor of 100,000 after attenuation through the vault wall, and the thermal-energy neutron dose equivalent rate would be an additional factor of 1000 below that of the fast neutrons. Based on these findings, the shielding installed in this facility is sufficient for the use of at least 5.0 mg of 252Cf.  相似文献   

2.
A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. During calculations, (252)Cf and shielding were modelled and the neutron spectra as well as the H(10) were calculated in four sites. The calculation was extended to include a water shielding, the source in vacuum and in air. Besides neutron shielding characteristics, the Kerma in air due to gammas emitted by (252)Cf and due to capture gamma rays in the shielding were included.  相似文献   

3.
The ambient/personal dose equivalent per fluence for D(2)O moderated (252)Cf neutron source was determined by measurement. An appropriate subtraction of the scattered neutrons is required for the accurate measurement of direct neutrons. A cubic shadow object was used for the subtraction of the scattered neutrons from the surroundings. The scattered neutrons to be subtracted vary with the position of the shadow object due to the large volume of the source. Using the Monte Carlo code MCNP-4C, the optimum positions of the shadow object were surveyed for subtracting the scattered neutrons. The energy spectra of direct neutrons were measured in the optimum position. The dosimetric parameters for the D(2)O moderated (252)Cf neutron source were reasonable, taking into account the uncertainties of the parameters.  相似文献   

4.
Several neutron spectrometers manufactured by Bubble Technology Industries (BTI) were tested and evaluated in a variety of neutron fields. Findings and conclusions are presented for the following BTI instruments: a modification of the Rotational Spectrometer (ROSPEC) that includes a thermal and epithermal capability, the Simple Scintillation Spectrometer that is used in conjunction with the ROSPEC to extend its high-energy range, and the MICROSPEC N-Probe which is capable of providing a crude spectrum over the energy range from thermal to 18 MeV. The main objective of these measurements was to determine the accuracy of both the energy spectrum and dose equivalent information generated by these devices. In addition, the dose response of the Wide-Energy Neutron Detection Instrument (WENDI-II) was measured in all neutron fields relative to a bare 252Cf calibration. The performance of the WENDI-II rem meter was compared to the dose information generated by the neutron spectrometers. The instruments were irradiated to bare 252Cf and 241AmBe sources, and in a series of moderated 252Cf fields using a standard D2O sphere and a set of polyethylene spheres. The measured spectra were benchmarked with a set of detailed Monte Carlo calculations with the same energy bin structure as that of the instruments under test. These calculations allowed an absolute comparison to be made with the measurements on a bin by bin basis. The simulations included the effects of room return and source anisotropy.  相似文献   

5.
A light-weight portable neutron survey meter was developed using a mixed organic gas counter for dose management at nuclear power plants and accelerator facilities. This survey meter, NSN31041, is ~2 kg in weight and W160×H250×L300 mm(3) in size, which is capable of measuring neutron ambient dose equivalent rate from thermal to 15 MeV neutrons. The neutron energy response of the survey meter is evaluated using continuous energy neutron sources of (252)Cf, (241)Am-Be, thermal neutrons generated from a graphite pile loading a (252)Cf source, concrete-moderated neutrons of (241)Am-Be source and D(2)O-moderated neutrons of (252)Cf source. The measured response data show very good agreement with neutron ambient dose equivalent within a 50 % deviation.  相似文献   

6.
To monitor workers for external neutron radiation dose, the Y-12 National Security Complex utilises the thermoluminescence dosemeters (TLDs) manufactured by Harshaw. At Y-12, the majority of external dose to workers is due to low-energy photon and/or beta particles emitted from uranium and its progeny. However, some neutron dose is expected since neutrons are produced from (alpha,n) reactions in various compounds found at the plant, including UF4 and UF6. Neutron sources, such as 252Cf, are also used throughout the complex. The Harshaw neutron dosemeter consists of two gamma-sensitive elements (7Li) and two neutron-sensitive elements enriched in 6Li with various shielding/filter materials placed around each of them. In this work, the energy response of the dosemeter to neutrons has been calculated using the Monte Carlo transport code MCNP Version 4-C and, these results are compared with the measured response of the dosemeter to unmoderated and D2O-moderated 252Cf neutrons. The response of the dosemeter has also been determined in terms of the personal absorbed dose and personal dose equivalent as a function of neutron energy based on the recommendations of the ICRP Publication 60 and ICRU Report 49. The energy response of the dosemeter characteristics can be used to generate spectral conversion coefficients for routine neutron absorbed dose and dose equivalent calculations.  相似文献   

7.
Because of high neutron and gamma-ray intensities generated during bombardment of a thallium-203 target, a thallium target-room shield and different ways of improving it have been investigated. Leakage of neutron and gamma ray dose rates at various points behind the shield are calculated by simulating the transport of neutrons and photons using the Monte Carlo N Particle transport computer code. By considering target-room geometry, its associated shield and neutron and gamma ray source strengths and spectra, three designs for enhancing shield performance have been analysed: a shielding door at the maze entrance, covering maze walls with layers of some effective materials and adding a shadow-shield in the target room in front of the radiation source. Dose calculations were carried out separately for different materials and dimensions for all the shielding scenarios considered. The shadow-shield has been demonstrated to be one suitable for neutron and gamma dose equivalent reduction. A 7.5-cm thick polyethylene shadow-shield reduces both dose equivalent rate at maze entrance door and leakage from the shield by a factor of 3.  相似文献   

8.
Multi-element thermoluminescence dosemeters (TLD), such as the Panasonic UD-809, are used in personal dosimetry. The Panasonic UD-809 dosemeter consists of one gamma sensitive and three neutron sensitive TLD elements with different filter materials. In this work, the neutron energy responses (the number of (n,alpha) reactions per neutron) of the neutron-sensitive TLD elements of the Panasonic UD-809 dosemeter were calculated using the MCNP Monte Carlo transport code. Experiments were performed in a calibration geometry with an unmoderated 252Cf neutron source. These measurements were made with the dosemeter placed on the centre front face of a polymethylmethacrylate (PMMA) slab phantom. The phantom was rotated in the horizontal plane from -90 to +90 degrees, in 15 degree increments. Good agreement between calculated and measured element responses was observed. The angular dependency of personal dose equivalent was also calculated for parallel beams of 252Cf neutrons and compared to the TLD element angular responses.  相似文献   

9.
The neutron shielding at the Massachusetts General Hospital's 235-MeV proton therapy facility was investigated with measurements, analytical calculations, and realistic three-dimensional Monte Carlo simulations. In 37 of 40 cases studied, the analytical calculations predicted higher neutron dose equivalent rates outside the shielding than the measured, typically by more than a factor of 10, and in some cases more than 100. Monte Carlo predictions of dose equivalent at three locations are, on average, 1.1 times the measured values. Except at one location, all of the analytical model predictions and Monte Carlo simulations overestimate neutron dose equivalent.  相似文献   

10.
In recent years, there has been a need for compact shielding design such as self-shielding of a PET cyclotron or upgradation of radiation machinery in existing facilities. In these cases, high performance shielding materials are needed. Concrete or polyethylene have been used for a neutron shield. However, for compact shielding, they fall short in terms of performance or durability. Therefore, a new type of neutron shielding material based on epoxy resin and colemanite has been developed. Slab attenuation experiments up to 40 cm for the new shielding material were carried out using a 252Cf neutron source. Measurement was carried out using a REM-counter, and compared with calculation. The results show that the shielding performance is better than concrete and polyethylene mixed with 10 wt% boron oxide. From the result, we confirmed that the performance of the new material is suitable for practical use.  相似文献   

11.
This paper investigates the possibility of optimizing the performance of the neutron backscattering method in landmine detection by designing a suitable shield around a 252Cf neutron source to reduce the background due to soil and the neutrons emitted from the source that hit the detector directly. A series of Monte Carlo simulations were performed to improve the source shield thickness and to study the elastically backscattered (EBS) 252Cf neutrons from the buried explosive material TNT in the soil; the optimal configuration was examined against different soil types and source heights. The results obtained in terms of performance of the relative (EBS) neutrons confirmed that the proposed source shield has significantly improved the signal to background ratio. Higher signal-to-background ratio was observed using 252Cf neutron source as compared to Pu-Be source.  相似文献   

12.
The University of Pennsylvania is building a proton therapy facility in collaboration with Walter Reed Army Medical Center. The proposed facility has four gantry rooms, a fixed beam room and a research room, and will use a cyclotron as the source of protons. In this study, neutron shielding considerations for the proposed proton therapy facility were investigated using analytical techniques and Monte Carlo simulated neutron spectra. Neutron spectra calculations were done using the GEANT4 (v6.2) simulation code for various materials: water, carbon, iron, nickel and tantalum to estimate the neutron production at proton beam energies of 100, 175 and 250 MeV. Dose equivalent calculations were performed using analytical methods at various critical points within the facility, by folding the GEANT4 produced neutron spectra with dose equivalent rate data from the National Council on Radiation Protection and Measurements (NCRP) Report #144.  相似文献   

13.
Proton therapy facilities are shielded to limit the amount of secondary radiation to which patients, occupational workers and members of the general public are exposed. The most commonly applied shielding design methods for proton therapy facilities comprise semi-empirical and analytical methods to estimate the neutron dose equivalent. This study compares the results of these methods with a detailed simulation of a proton therapy facility by using the Monte Carlo technique. A comparison of neutron dose equivalent values predicted by the various methods reveals the superior accuracy of the Monte Carlo predictions in locations where the calculations converge. However, the reliability of the overall shielding design increases if simulation results, for which solutions have not converged, e.g. owing to too few particle histories, can be excluded, and deterministic models are being used at these locations. Criteria to accept or reject Monte Carlo calculations in such complex structures are not well understood. An optimum rejection criterion would allow all converging solutions of Monte Carlo simulation to be taken into account, and reject all solutions with uncertainties larger than the design safety margins. In this study, the optimum rejection criterion of 10% was found. The mean ratio was 26, 62% of all receptor locations showed a ratio between 0.9 and 10, and 92% were between 1 and 100.  相似文献   

14.
An investigation was performed to examine the neutron dose equivalent in a radiotherapy maze lined with a customised neutron shielding material. The accelerator investigated was a Varian Clinac 2100C/D using 18 MV photons, and the neutron shielding utilised at this centre was Premadex commercially available neutron shielding. Based on Monte Carlo simulations, properly installed customised neutron shielding may reduce the neutron dose equivalent by up to a factor of 8 outside the maze, depending upon the installation. In addition, it was determined that the neutron dose near the entrance to the maze may be reduced by approximately 40% by using customised neutron shielding in the maze, as compared with a facility not using this shielding. This would have a positive dose-saving effect in doorless maze designs.  相似文献   

15.
The 252Cf neutron brachytherapy devices were designed and manufactured after solving those problems: the shield difficulties for 252Cf neutron; the method and facilities for 252Cf neutron source deliver; the dose calculation and measurement for 252Cf neutron. From 1999-2009, more than twenty 252Cf neutron brachytherapy devices had been installed in China. The Chinese radiation oncologists implemented the 252Cf neutron brachytherapy on more than 5 000 different kinds of cancer patients, including cervix cancer; endometrium cancer and achieved ideal results. For special presentation, they had breakthrough on radical treatment for low lying rectal adenocarcinoma with sphincter preservation and melanoma patients after the modification of 252Cf neutron intracavitary applicator and dose calibration.  相似文献   

16.
A model has been developed for calculating the angular neutron fluence distributions for radionuclide neutron sources that are heavily encapsulated or surrounded by source support structures as a source holder and a source movement system. These structures may cause an anisotropic neutron fluence distribution. This should be taken into account in the neutron-measuring instruments calibration procedure. The calculations were made for two types of widely used neutron sources, (241)Am-Be and (252)Cf, by combining an in-house code simulating the (9)Be(alpha,n) reactions and the Monte Carlo code MCNP-4C. As a result, anisotropy factors in the direction perpendicular to the source capsule axis for bare neutron sources were evaluated to be 1.012, 1.030 and 1.039 for (252)Cf in a standard Amersham X1 capsule, (241)Am-Be in a X3 capsule and (241)Am-Be in a X4 capsule, respectively. These values are in reasonable agreement with the published data. If the support structures are included in the MCNP simulation, the anisotropy factors for these neutron sources increase by approximately 10%.  相似文献   

17.
A convenient neutron source is made for calibration of neutron survey instruments and personal dosimeters that are used in various nuclear installations such as fuel reprocessing, waste management, fuel fabrication and oil and well logging facilities, etc. This source consists of a bare (241)Am-Be neutron source placed at the centre of a 15-cm radius stainless steel spherical shell filled with distilled water. This paper describes the standardisation of the source at Bhabha Atomic Research Centre, using De Pangher neutron long counter both experimentally and using the Monte Carlo simulation. The ratio of neutron yield of water moderated to the bare (241)Am-Be neutron source was found to be 0.573. From the simulation, the neutron-fluence-weighted average energy of water-moderated (241)Am-Be source (fluence-weighted average energy of 2.25 MeV, dose-weighted average energy of 3.55 MeV) was found to be nearly the same as that of a (252)Cf source (fluence-weighted average energy of 2.1 MeV, dose-weighted average energy of 2.3 MeV). This source can be used for calibration in addition to (252)Cf, to study the variation in response of neutron monitoring instruments.  相似文献   

18.
A conventional Bonner Sphere (BS) set consisting of six polyethylene spheres was modified to enhance its response to a high-energy neutron by putting a lead shell inside a polyethylene moderator. The response matrix of an extended BS was calculated using the MCNPX code and calibrated using a 252Cf neutron source. In order to survey the unknown photon and neutron mixed field, a spherical tissue equivalent proportional counter (TEPC) was constructed and assembled as a portable measurement system. The extended BS and the self-constructed TEPC were employed to determine the dosimetric quantities of the neutron field produced from the thick lead target bombarded by the 2.5 GeV electron beam of Pohang Accelerator Laboratory (PAL) and the neutron calibration field of Korea Atomic Energy Research Institute (KAERI).  相似文献   

19.
We investigated the effectiveness of a small neutron shield configuration for the transportation of fresh MOX fuel rods in an experimental facility, this in order to reduce the dose received by the personnel. Monte Carlo simulations using the Tripoli and MCNP4B code were applied. Different configurations were studied, starting from the bare fuel rod positioned on an iron plate up to a fuel rod covered by a box-shaped shield made of different materials such as polyethylene, polyethylene with boron and polyethylene with a cadmium layer. We compared the neutron spectra for the different cases and calculated the corresponding ambient equivalent dose rate H*(10).  相似文献   

20.
The response of a TLD-600/TLD-700 area dosemeter has been characterized in neutron fields around the 590 MeV cyclotron ring at the Paul Scherrer Institute (PSI). The dosemeter is based on a cylindrical paraffin moderator with three of each type of TLD chip at the centre, and is intended to use for area monitoring around accelerator facilities. The dosemeter is calibrated in terms of ambient dose equivalent using a non-moderated 252Cf neutron source. The ambient dose equivalent response has been tested in five locations where the neutron fields and dose rates have been well characterized by Bonner sphere spectrometer and active neutron monitor measurements. The different spectrum shapes and dose rates in the five locations permit the comparison of the behavior of the active and passive dosemeters in these neutron fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号