首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
莱夫–文森特窗插值FFT谐波分析方法   总被引:11,自引:0,他引:11  
加窗插值快速傅里叶变换(fast Fourier transform,FFT)算法广泛应用于电力系统谐波分析,可改善因非同步采样和非整数周期截断造成的频谱泄漏,提高谐波参数计算的准确度。该文分析莱夫–文森特(Rife-Vincent)窗的频谱特性,提出基于5项Rife-Vincent(I)窗插值FFT的谐波分析算法,运用多项式拟合求出简单实用的插值修正公式,大大减少了谐波分析时的计算量。仿真结果表明,在非同步采样和非整数周期截断条件下,提出的谐波分析方法适合于弱信号分量的提取和复杂谐波信号的准确分析,对含21次谐波信号分析的频率计算误差仅为1.9× 10-8%,幅值、初相位计算误差分别小于等于0.000 1%和0.029%。  相似文献   

2.
计算谐波的相位差校正法利用间隔一个周期的两段连续N点时域采样信号并进行两次N点FFT变换,利用其对应离散谱线的相位差计算出频率变化量对幅值和相位进行校正。为了减少两次FFT运算量和提高实时性,采用了加余弦窗的递推DFT算法并利用间隔一个采样周期的两次DFT变换计算其对应离散谱线的相位差。由于加Blackman-harris窗函数的频谱泄漏影响小计算精度高,为了提高计算精度,采用加Blackman-harris窗截断,结合Blackman-harris窗的幅值修正系数公式可以准确校正幅值。为进一步提高计算速度,在计算幅值修正系数时还利用了嵌套形式的三次样条函数。通过仿真计算结果可以看出,频率误差小于0.000 1 Hz,幅值误差小于0.02%,相位误差小于0.5%,具有较高的精度。  相似文献   

3.
计算谐波的相位差校正法利用间隔一个周期的两段连续N点时域采样信号并进行两次N点FFT变换,利用其对应离散谱线的相位差计算出频率变化量对幅值和相位进行校正.为了减少两次FFT运算量和提高实时性,采用了加余弦窗的递推DFT算法并利用间隔一个采样周期的两次DFT变换计算其对应离散谱线的相位差.由于加Blackman-harris窗函数的频谱泄漏影响小计算精度高,为了提高计算精度,采用加Blackman-harris窗截断,结合Blackman-harris窗的幅值修正系数公式可以准确校正幅值.为进一步提高计算速度,在计算幅值修正系数时还利用了嵌套形式的三次样条函数.通过仿真计算结果可以看出,频率误差小于0.000 1 Hz,幅值误差小于0.02%,相位误差小于0.5%,具有较高的精度.  相似文献   

4.
利用快速傅里叶变换(FFT)进行谐波分析时,在非同步采样和非整数周期截断条件下存在频谱泄露和栅栏效应,影响谐波的分析精度。采用传统的窗函数对信号进行加权,虽然可以减小频谱泄露和栅栏效应的影响,但其效果受到窗函数旁瓣特性的制约。提出一种基于衍生半正弦窗的改进相位差电力谐波分析方法。该方法引入一种新的窗——衍生半正弦窗,对信号进行加权,然后采用改进相位差算法分析谐波参数——幅值、频率、相位。衍生半正弦窗可以通过调整指数获得满足要求的旁瓣特性,能较好的抑制频谱泄露,在工程应用中具有很大的灵活性。推导了信号基波及各次谐波频率、幅度、初相位的求解公式。仿真实验结果表明,提出的基于衍生半正弦窗的改进相位差算法具有较高的计算精度。  相似文献   

5.
在高压电气设备介损角在线监测中,由于存在工频周期信号的非同步采样和截断现象,从而造成利用FFT算法计算介损角产生较大的误差。本文分析了非同步采样造成的FFT算法的泄漏效应,提出了一种基于相关Blackman窗的FFT介损角测量算法。该方法采用相关Blackman窗对系统电流与电压信号进行加权,然后利用频谱相位差校正法进行频谱校正以获得基波相位,最后根据电流与电压的基波相位差来计算出介损角。仿真结果表明该算法有效地克服了非同步采样和截断造成的介损角测量误差,并且能够大大降低信号频率波动、高次谐波对介损角测量精度的影响。  相似文献   

6.
李媛  王海云 《电测与仪表》2018,55(17):15-20
采用FFT谐波分析方法进行介质损耗角测量时,由于非同步采样会导致频谱泄露和栅栏效应,给介质损失角测量带来较大误差。为提高介损测量精度,文中提出基于Nuttall窗的三谱线插值介损测量方法。通过加Nuttall窗进行FFT得到离散序列,由三谱线插值进行频谱校正得到电压电流基波相位,根据两者相位差来计算介质损耗角。在基波频率波动、三次谐波含量变化、白噪音存在和采样点数变化的情况下测量介损角。仿真分析结果表明,Nuttall窗具有良好的旁瓣性能,能更好抑制频谱泄露,减小测量误差,所提方法测量介质损耗角时具有较高计算精度。  相似文献   

7.
基于多CPU与相位差校正的高精度谐波功率测量   总被引:7,自引:0,他引:7  
快速傅里叶变换(FFT)应用于谐波分析与测量时容易因频谱泄漏影响测量准确度。研究Rife-Vincent窗的旁瓣特性,提出了一种基于Rife-Vincent窗频谱相位差校正的谐波分析与谐波功率测量方法。在此基础上设计了一种新型三相谐波电能表,给出了基于TDK6513H+ADSP-BF533+M30624FGPFP的多CPU电力谐波精确测量解决方案。实验结果表明,应用所提出的谐波分析算法时,仪器的性能优于GB/T 17833—1999及GB/T 14549—1993的要求,基波有功功率测量误差小于0.2%,谐波电压测量相对误差小于1%,谐波电流测量相对误差小于3%,谐波相位测量误差绝对值小于2°,适合于高精度谐波功率测量。  相似文献   

8.
基于Nuttall窗双谱线插值FFT的电力谐波分析方法   总被引:16,自引:2,他引:14  
快速傅里叶变换(fast Fourier transform,FFT)因其易于嵌入式系统实现而被作为电力谐波分析的主要方法,但电力谐波分析时很难做到同步采样和整数周期截断,由此造成的频谱泄漏将影响测量结果的准确性。加窗和插值修正算法可改善基于FFT的谐波参数计算的准确度。该文讨论Nuttall窗的旁瓣特性和双谱线插值算法,提出基于Nuttall窗双谱线插值FFT的电力谐波分析方法,用曲线拟合函数求出实用的双谱线插值修正公式,大大减少了计算量。仿真结果表明,提出的谐波分析方法在非同步采样和非整数周期截断条件下,21次谐波幅值计算误差小于等于0.000 9%,初相位计算误差小于等于0.04%。  相似文献   

9.
一种改进的Flat-top窗电力系统谐波分析算法   总被引:1,自引:0,他引:1       下载免费PDF全文
快速傅里叶变换(Fast Fourier Transform,FFT)是电力系统的谐波分析最常用、最容易实现的方法。但由于实际电网频率波动,FFT算法很难实现同步采样,谐波分析精度受到频谱泄漏与栅栏效应的制约。分析了Flat-top窗的旁瓣特性,建立了一种改进的加Flat-top窗FFT算法。通过分段校正方法,当频率偏移量小时,使用计算量小的加Flat-top窗FFT算法;当频率偏移量大时,利用相位差校正法对幅值进行插值修正。仿真结果表明:改进的Flat-top窗相位差校正法有效地抑制频谱泄漏和栅栏效应,  相似文献   

10.
在非同步采样情况下,利用快速傅里叶变换(FFT)进行电力系统谐波分析时,会带来频谱泄漏现象和栅栏效应,影响了信号的量测精度.为此,提出了一种汉宁双窗全相位FFT三谱线插值检测谐波算法.该算法原理是:在汉宁双窗全相位FFT分析的基础上,利用基波频点附近的3条相邻谱线幅值作比,计算出频率校正量,并由此估计出谐波信号的幅值;...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号