共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
制备了碳掺杂蒙脱土修饰电极(C-MMT/GCE),采用循环伏安法研究了单宁酸在该修饰电极上的电化学行为。结果表明,该电极过程受吸附-扩散混合控制,转移电子数等于质子数n=m=1,电极有效面积A eff=0.092 cm2,扩散系数D=1.66×10-5cm2/s。单宁酸的氧化峰电流与其浓度在8.0×10-6~4.0×10-4mol/L呈线性关系,检出限为1.0×10-6mol/L,并测得单宁酸试样的回收率为97.6%~102.8%。该修饰电极具有良好的重现性。 相似文献
3.
Fe/Cu催化内电解-Fenton法联合处理三氯乙酸废水的研究 总被引:1,自引:2,他引:1
采用Fe/Cu内电解-Fenton法联合处理三氯乙酸废水。考察了Fe与Cu质量比、pH值和H2O2投加量等因素对废水处理效果的影响。确定了联合处理法的最佳工艺条件:催化内电解过程中Fe与Cu质量比为4:1、pH值为4、搅拌时间为50min;Fenton法阶段中pH值为4、H2O2加入量为10mL/L并分批投加、搅拌时间为40min。在最佳工况条件下,联合工艺处理质量浓度为100mg/L的三氯乙酸废水脱氯率达80.1%,COD去除率达78.4%。使用联合法处理废水,能有效提高处理效果,可以处理较高浓度的三氯乙酸废水。 相似文献
4.
利用自组装方法,将双巯基化合物通过形成金硫键修饰至金电极表面,再利用双巯基化合物的另一个一SH基,吸附纳米金颗粒形成纳米金的膜。运用循环伏安法对此修饰电极进行研究。发现双巯基化合物的最佳修饰时间为2小时;纳米金的最佳修饰速度为6小时:当扫描速度为100mv/s时固定抗体抗原的效果最好;而抗体抗原浓度为1:4时固定效果最佳; 相似文献
5.
采用溶胶凝胶法制备TiO2溶胶,以管式炭膜(TCM)作为基体,通过浸渍法在TCM表面涂覆TiO2催化层,炭化后得到具有催化性能的TCM;将得到的管式催化炭膜作为阳极应用于自制膜反应器,将膜分离和电催化技术耦合处理高含量苯酚废水。X射线衍射(XRD)结果表明TCM表面TiO2属于锐钛矿型,具有较高的催化活性;循环伏安法(CV)表明TCM催化电极对苯酚有明显的催化氧化作用;膜分离-电催化耦合技术相比单纯电催化对苯酚有更好的降解效果,在相同处理时间内可提高约40%的去除率,是一种可行的集成技术。并探讨了膜反应器的优化运行参数。 相似文献
6.
7.
催化还原技术处理水溶液中氯代有机物的实验研究 总被引:4,自引:0,他引:4
以四氯化碳和四氯乙烷为代表物,研究了水溶液中氯代烷烃的催化还原脱氯技术,使用的还原剂为废铁刨花并添加催化剂和极化材料.结果表明该方法能使氯代有机物在零价铁体系中有效地发生还原反应,能迅速脱氯为氯离子,降低氯代有机物的毒性。探讨了有机物浓度对反应速率的影响,并分析了还原脱氯速率和反应中间产物,四氯化碳的反应产物主要是二氯甲烷,而1,1,2,2-四氯乙烷的主要反应产物是二氯乙烯。氯代有机物直接得到电子而发生还原脱氯是其主要反应机理。 相似文献
8.
9.
10.
本文利用循环伏安和交流阻抗等电化学方法研究了三种贮氢合金表面处理方法(包铜、包镍、包钻)对贮氢合金(MH)电极电化学性能的影响. 相似文献
11.
12.
通过层层自组装技术利用多壁碳纳米管(MWNTs)对玻碳电极进行厚度可控的表面修饰.在1.7 V电压下,分散于水中的MWNTs在玻碳电极上电沉积2 h后,分别在质量分数为1%的聚二烯丙基二甲基氯化铵溶液和1 mg/L MWNTs的四硼酸钠分散液(pH 9.18)中交替浸泡15 min,实现层层自组装修饰电极.当自组装层数为5时,得到的修饰电极对硫代胆碱(TCh)的循环伏安法检测结果与裸玻碳电极相比,氧化过电位由0.65 V降低到0.35 V,峰电流提高一倍左右,而且由于碳纳米管和双分子层结构的存在,使得电极抗产物污染能力加强,稳定性和重复性大幅度提升.该修饰电极对硫代胆碱的检测限在0.75 μm以下,在1.50~75.00 μm内呈现良好的线性关系(R=0.9998),在酶传感器的研制及农药残留的快速检测中有良好的应用前景. 相似文献
13.
14.
基于还原型谷胱甘肽(GSH)与金属离子相互作用,从而影响其在金电极上的电化学响应,建立了一种灵敏、简便的GSH电化学检测方法。以铜(Ⅱ)或铬(Ⅵ)为信号离子,采用循环伏安法研究不同浓度的GSH对铜(Ⅱ)或铬(Ⅵ)在金电极上的电化学响应的影响规律。结果表明,铜(Ⅱ)和铬(Ⅵ)分别在0.28 V和0.25 V出现了较强的还原峰;当反应体系中加入不同浓度的GSH时,峰电流均下降,且铜(Ⅱ)和铬(Ⅵ)峰电流分别在1.0×10-8~8.0×10-8mol.L-1和1.0×10-11~7.0×10-11mol.L-1GSH浓度范围内与GSH浓度呈线性相关;铜(Ⅱ)和铬(Ⅵ)的GSH检测限分别为1.0×10-9mol.L-1和1.0×10-11mol.L-1。 相似文献
15.
实验制备了多壁碳纳米管修饰玻碳电极(MWNTs/GCE),在pH=3.0的磷酸盐缓冲溶液(PBS)中,用循环伏安法(CV)和微分脉冲伏安法(DPV)探讨了槲皮素在修饰电极上的电化学行为。结果表明:MWNTs/GCE对槲皮素的氧化还原反应有更明显的电催化作用。微分脉冲伏安法检测表明:在2.0×10-6~1.0×10-4mol·L-1浓度范围内,槲皮素的主氧化峰峰电流与浓度存在良好的线性关系,表明该电极可用于槲皮素的检测。 相似文献
16.
用循环伏安法(CV)、线性扫描伏安法(LSV)研究了苏丹红Ⅱ在铋膜电极上的电化学行为。结果表明,在最佳条件下,BR缓冲溶液(pH=2),无水乙醇作助溶剂(体积分数27.5%),苏丹红Ⅱ在-0.50附近有一灵敏还原吸收峰。用线性扫描伏安法测定标准品,扫描速度为100 mV/s,浓度在7.49×10-6~1.87×10-5范围内和峰高呈线性关系。回归线方程:pí=1.722 2+0.751 7c(×10-3mmol/L),r=0.994 8。检出限为3.74×10-4mmol/L。据此建立了一种快速、简便测定苏丹红Ⅱ的方法。 相似文献
17.
用电化学方法将γ-氨基丁酸聚合在玻碳电极(GCE)表面,制备了聚γ-氨基丁酸修饰电极(poly γ-aminobutyric acid modified electrode, P-γ-ABA/GCE)。探究了丹皮酚(paeonol, Pae)在此修饰电极上的电化学行为,建立了测定丹皮酚的新方法。结果表明,在pH=7.0的Na2HPO4-NaH2PO4缓冲溶液(PBS)中,Pae的浓度与氧化峰电流在2.0×10-7~8.0×10-5 mol/L范围内有良好的线性关系,相关系数R为0.992 7,检出限为8.0×10-8 mol/L。在样品Pae的测定中,回收率为96.3%~103.7%。该方法可用于实际样品的测定。 相似文献
18.
19.
Fe/Cu催化内电解-Fenton法联合处理三氯乙酸废水的研究 总被引:1,自引:0,他引:1
采用Fe/Cu内电解-Fenton法联合处理三氯乙酸废水。一考察了Fe与Cu质量比、pH值和H2O2投加量等因素对废水处理效果的影响。确定了联合处理法的最佳工艺条件:催化内电解过程中Fe与Cu质量比为4:1、pH值为4、搅拌时间为50min;Fenton法阶段中pH值为4、H2O2加入量为10ml/L并分批投加、搅拌时间为40min。 相似文献
20.
《应用化工》2022,(10):2460-2464
利用多壁碳纳米管较高比表面积、良好导电性和生物相容性等优良性能,制备多壁碳纳米管修饰玻碳电极,并研究2,4,6-三氯苯酚在多壁碳纳米管修饰电极上的电化学行为及其测定方法。采用滴涂法制备的多壁碳纳米管修饰玻碳电极作为工作电极,用循环伏安法测定2,4,6-三氯苯酚。结果表明,在最优的实验条件:pH=6.0的磷酸盐缓冲液,分散液的修饰量为5μL,扫描速率为50 mV/s下,2,4,6-三氯苯酚的浓度在10~110μmol/L内与对应的峰电流呈线性关系,相关系数为0.995 8,检出限为1.81×10(-5)μmol/L。并且进行实际水样测试,回收率在95.72%~103.25%。所建立的检测2,4,6-三氯苯酚新方法灵敏度高、操作简单、测定线性范围宽,可用于2,4,6-三氯苯酚的快速检测。 相似文献