首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An indirect forced circulation solar water heating systems using a flat-plate collector is modeled for domestic hot water requirements of a single-family residential unit in Montreal, Canada. All necessary design parameters are studied and the optimum values are determined using TRNSYS simulation program. The solar fraction of the entire system is used as the optimization parameter. Design parameters of both the system and the collector were optimized that include collector area, fluid type, collector mass flow rate, storage tank volume and height, heat exchanger effectiveness, size and length of connecting pipes, absorber plate material and thickness, number and size of the riser tubes, tube spacing, and the collector’s aspect ratio. The results show that by utilizing solar energy, the designed system could provide 83-97% and 30-62% of the hot water demands in summer and winter, respectively. It is also determined that even a locally made non-selective-coated collector can supply about 54% of the annual water heating energy requirement by solar energy.  相似文献   

2.
This paper presents an analysis of the performance of a solar water heating system with natural thermosyphon circulation between the collector and the storage tank. The analysis is based on the formulation by Ong except that provision for withdrawal of hot water from the tank (for domestic/ industrial use) has been made in the energy balance equation; further in contrast to the use of the finite difference method by Ong, explicit expressions have been obtained. The results of the present analysis (in the absence of withdrawal of hot water from the tank) are seen to be in better agreement with experiments than the corresponding results of Ong, obtained by use of the finite difference method.

Numerical results, corresponding to hot water retrieved from the storage tank, have been presented for two modes of hot water withdrawal viz. the constant flow rate and constant mean storage tank water temperature.  相似文献   


3.
An experimental investigation has been carried out on a thermosyphon solar water heater. The system consisted of a flat-plate collector of 1.5 m2 absorber area with 21 tubes/m width and storage tank of 125 litre capacity. Experiments were carried out for both cloudy and clear weather conditions in winter and summer. The hourly system performance was evaluated for all test conditions. The final mean tank temperature was measured daily which enabled the calculation of the possible contribution of solar energy for domestic hot water supply in Basrah, Iraq (latitude 30.76°N). The system was tested at both no-load and loading conditions. Intermittent and continuous load was imposed, and system performance was evaluated for each condition.  相似文献   

4.
Significant energy mismatch exists in solar water heating systems as the time and amount of solar energy supply are usually different from that of hot water demand. Using a hot water storage tank can reduce or eliminate such mismatch in short term while it is difficult to avoid this mismatch in long term. In many optimal design and life-cycle analysis methods, the energy mismatch is ignored which causes the system performance to be overestimated and also misleads the optimal design of the system. This paper presents a simplified method for optimizing the key parameters of solar water heating systems based on life-cycle energy analysis. This optimal method considering the energy mismatch phenomenon can be implemented through two steps. In the first step, a simplified energy model based hourly energy matching different components of the system, is developed for determining the operating performance of system with different solar collector areas and water storage volumes. In the second step, the law of diminishing marginal utility is employed to determine the optimum size of the system. The optimum size is identified when the maximal life-cycle net energy saving is achieved. A case study on the application of the proposed method in a building is presented as well.  相似文献   

5.
Energy savings for solar heating systems   总被引:1,自引:0,他引:1  
In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model used to calculate the boiler efficiency on a monthly basis was evaluated. Comparisons of measured and calculated fuel consumptions showed a good degree of similarity. With the boiler model, various simulations of solar domestic hot water heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal system. For some conditions the fuel reduction can be up to the double of the solar gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated in this paper.  相似文献   

6.
This paper presents an improved design of a photovoltaic/thermal (PV/T) solar collector integrating a PV panel with a serpentine-shaped copper tube as the water heating component and a single pass air channel as the air heating component. In addition to the electricity generated, this type of collector enables the production of both hot air and water, increasing the total efficiency per unit area compared to the conventional PV/T solar collector. The use of both fluids (bi-fluid) also creates a greater range of thermal applications and offers options in which hot and/or cold air and/or water can be utilized depending on the energy needs and applications. In this paper, the design concept of the bi-fluid PV/T solar collector is emphasized with 2D steady state energy balance equations for the bi-fluid configuration are developed, validated and used to predict the performance of the bi-fluid solar collector for a range of mass flow rates of air and water. The performance of the collector is then compared when the fluids are operated independently and simultaneously. The simulations indicate that when both fluids are operated independently the overall thermal and electrical performance of the solar collector is considered as satisfactory and when operated simultaneously the overall performance is higher. The bi-fluid PV/T solar collector discussed in this paper will add insights to the new knowledge of optimizing the utilization of solar energy by a PV/T solar collector and has potential applications in various fields.  相似文献   

7.
The thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger was investigated to show its applicability in China. The effect on the performance of the collector of using a heat exchanger between the collector and the tank was analyzed. A “heat exchanger penalty factor” for the system was determined and energy balance equation in the system was presented. Outdoor tests of thermal performance of the thermosyphon flat-plate solar water heater with a mantle heat exchanger were taken in Kunming, China. Experimental results show that mean daily efficiency of the thermosyphon flat plate solar water heater with a mantle heat exchanger with 10 mm gap can reach up to 50%, which is lower than that of a thermosyphon flat-plate solar water heater without heat exchanger, but higher than that of a all-glass evacuated tubular solar water heater.  相似文献   

8.
In dry regions with abundant solar radiation at Southern latitudes between 30 and 40°, such as the central-western part of Argentina, it is possible to obtain domestic hot water by means of simple integral collector accumulator systems, which are less expensive than the classical flat plate active systems. The experimental assessment of two solar accumulator collector systems yielding 300 l of hot water daily is reported in this work. Daily diurnal global efficiency and nocturnal thermal losses have been systematically determined over a 5-month period, from austral summer to austral winter. The results of these systems were compared with the results obtained from a high quality thermosyphon solar system composed of a flat plate collector and its corresponding insulated storage tank, tested at the same time. The experiments were carried out by measuring the climatic variables, temperatures in different parts of the collectors, and mass flow rates of water, during the test days. Based on these measurements, the behaviour of the systems was analysed by comparing exit temperatures, heat losses, and delivered useful energy. An economic evaluation was made considering the investment time recovery through the savings the system could provide working with different conventional sources of energy. The systems proved to work efficiently, although some improvements should be made on the semitransparent thermal insulation in order to enhance its winter performance.  相似文献   

9.
For impressive dissemination of the solar thermal gazettes, it is imperative to keep on changing the device design features so as to cater to the different demands of diverse section of the society. Domestic solar hot water systems are not suitable for cooking and the capacity of domestic solar box type cookers for water heating is very low. We report truncated pyramid geometry based multipurpose solar device which could be used for domestic cooking as well as water heating. The device is designed, fabricated and tested. Cooking tests approved by Bureau of Indian Standards were performed in different seasons and the device was found to meet the requirement stipulated on two figures of merit. The performance of the design was also evaluated as a hot water system and the maximum efficiency was found to be 54%. The day-time and average night-time heat-loss coefficients were found to be 5.7 W/°C m2 and, 3.74 W/C m2, respectively, which are comparable to those of flat-plate collector based solar hot water systems. A simple economic analysis illustrate that this kind of multi-purpose design could be financially viable and physically useful.  相似文献   

10.
This paper presents the modelling and simulation of a solar water heating system using a time marching model. The results of simulations performed on an annual basis for a solar system, constructed and operated in Yugoslavia, which provides domestic hot water for a four-person family are presented. The solar water heater consists of a flat-plate solar collector, a water-storage tank, an electric heater, and a water-mixing device. The mathematical model is used to evaluate the annual variation of the solar fraction with respect to the volume of the storage tank, demand hot water temperature required, difference of this temperature and preset storage tank water temperature, and consumption profile of the domestic hot water demand. The results of this investigation may be used to design a solar collector system, and to operate already designed systems, effectively. The results for a number of designs with different storage tank volumes indicate that the systems with greater volume yield higher solar fraction values. The results additionally indicate that the solar fraction of the system increases with lower hot water demand temperature and higher differences between the mean storage water and the demand temperatures. However, when a larger storage tank volume is used, the solar fraction is less sensitive to a variation of these operation parameters.  相似文献   

11.
TRNSYS program was used to simulate the performance of a thermosyphon type domestic solar water heating system which is used in the West Bank. The system installation and operation parameters were optimized including collector tilt angle, the hot water storage tank volume and location relative to the collector, and the hot water consumption pattern and daily rate.  相似文献   

12.
Performance of water-in-glass evacuated tube solar water heaters   总被引:2,自引:0,他引:2  
The performance of water-in-glass evacuated tube solar water heaters is evaluated using experimental measurements of optical and heat loss characteristics and a simulation model of the thermosyphon circulation in single-ended tubes. The performance of water-in-glass evacuated tube solar collector systems are compared with flat plate solar collectors in a range of locations. The performance of a typical 30 tube evacuated tube array was found to be lower than a typical 2 panel flat plate array for domestic water heating in Sydney.  相似文献   

13.
Solar combisystems are relatively complex systems with many different components and operational parameters. Before the beginning of IEA-SHC Task 26 (“solar combisystems”), no method was available with which they could be compared. The well known “f-chart” method was introduced by Duffie and Beckman already in the seventies, but was only useful for dimensioning generic combisystems, with a defined hydraulic scheme. It didn’t give a method to compare different designs.The objective of this work was to develop a simple tool for characterizing the performance of these systems. The method used was to analyse the comprehensive simulation results of Task 26 and to look for relationships between the key external factors of climate and load, and the system performance. The result is a new and simple methodology for characterization of solar combisystems, called the fractional solar consumption (FSC) method. FSC is a dimensionless quantity, which takes simultaneously into account the climate, the space heating and domestic hot water loads, the collector size, its orientation and tilt angle, but which does not depend on the studied system design.The study shows that fractional energy savings, with and without parasitic energy included, can be expressed as a quadratic function of FSC. The relationship was shown to be valid for a wide range of conditions, but to be limited for certain parameters such as collector orientation and hot water load. The method has been used to create a nomogram and the computer design tool CombiSun.  相似文献   

14.
S. B. Riffat  X. Zhao 《Renewable Energy》2004,29(12):1965-1990
A theoretical analysis has been carried out to investigate the thermodynamic and heat transfer characteristics of a hybrid heat pipe solar collector/CHP system based on the assumption that the system operates on a typical Rankine cycle. Experimental testing of the prototype was also carried out using two types of turbine units. The variation of refrigerant pressures and temperatures, hot water temperatures in the collector and boiler systems, as well as chill water temperatures were recorded. The results were used to estimate the heat from the boiler and the solar collectors, the electricity and hot water generation (indicated as kW energy) from the CHP operation and the gas consumption of the system. The modelling and experimental results were compared for the impulse-reaction turbine system, and a simple analysis of the energy and environmental benefits of the system was carried out. The analysis indicated that the proposed system would save primary energy of approximately 3150 kWh per annum compared to the conventional electricity and heating supply systems, and this would result in reduction in CO2 emission of up to 600 tonnes per annum. The running cost of the proposed system would also be lower than conventional heating/power systems.  相似文献   

15.
16.
This paper describes the characteristics of horizontal mantle heat exchangers for application in thermosyphon solar water heaters. A new correlation for heat transfer in horizontal mantle heat exchangers with bottom entry and exit ports was used to predict the overall heat transfer and stratification conditions in horizontal tanks with mantle heat exchangers. The model of a mantle heat exchanger tank was combined with the thermosyphon solar collector loop model in TRNSYS to develop a model of a thermosyphon solar water heater with collector loop heat exchanger. Predictions of stratification conditions in a horizontal mantle tank are compared with transient charging tests in a laboratory test rig. Predictions of daily energy gain in solar preheaters and in systems with in-tank auxiliary boosters are compared with extensive outdoor measurements and the model is found to give reliable results for both daily and long-term performance analysis.  相似文献   

17.
We present the modeling and optimization of a new hybrid solar thermoelectric (HSTE) system which uses a thermosyphon to passively transfer heat to a bottoming cycle for various applications. A parabolic trough mirror concentrates solar energy onto a selective surface coated thermoelectric to produce electrical power. Meanwhile, a thermosyphon adjacent to the back side of the thermoelectric maintains the temperature of the cold junction and carries the remaining thermal energy to a bottoming cycle. Bismuth telluride, lead telluride, and silicon germanium thermoelectrics were studied with copper–water, stainless steel–mercury, and nickel–liquid potassium thermosyphon-working fluid combinations. An energy-based model of the HSTE system with a thermal resistance network was developed to determine overall performance. In addition, the HSTE system efficiency was investigated for temperatures of 300–1200 K, solar concentrations of 1–100 suns, and different thermosyphon and thermoelectric materials with a geometry resembling an evacuated tube solar collector. Optimizations of the HSTE show ideal system efficiencies as high as 52.6% can be achieved at solar concentrations of 100 suns and bottoming cycle temperatures of 776 K. For solar concentrations less than 4 suns, systems with thermosyphon wall thermal conductivities as low as 1.2 W/mK have comparable efficiencies to that of high conductivity material thermosyphons, i.e. copper, which suggests that lower cost materials including glass can be used. This work provides guidelines for the design, as well as the optimization and selection of thermoelectric and thermosyphon components for future high performance HSTE systems.  相似文献   

18.
This paper uses the F-chart technique to evaluate three types of solar heating systems, namely; space solar heating and domestic hot water system (SHDHW), domestic hot water system (DHW) and solar swimming pool heating system (SPHS), using three types of concrete solar collectors, models A, B, and C, and one conventional metallic solar collector.

The economical analysis of SHDHW system revealed that the concrete collectors provided about 49 and 63% of the annual load when the collecting area of the solar panel increased from 55 to 88 M2 (25 to 40% of the building roof area). The corresponding solar contributions when conventional metallic collectors were used are 41 and 53%, respectively. This represents an improvement of the annual solar fraction of about 19% when concrete collectors are used instead of the metallic collectors.

It was found that solar heating systems with concrete solar collector models gave higher solar fractions and total life cycle savings than the conventional solar metallic collector.  相似文献   


19.
In this paper, performance details and operational benefits of a large scale solar trigeneration system that provides for solar assisted desiccant cooling, heating and hot water generation installed in a teaching institute building have been reported. A two-rotor desiccant system designed for handling 12 000 m3/hr of air was integrated into existing plant to provide a net reduction in energy consumption over the pre-existing heating ventilation and air-conditioning and domestic hot water systems. The system is controlled and monitored by a building management system which has been used to investigate and analyse the typical system behaviour. Heat from solar energy contributed consistently to reduce gas usage for water heating and on an annual basis showed a reduction of 21% of consumed energy. The solar energy contribution for space heating varied over winter months and during some months it was observed to contribute more than 50% of the total energy requirements for space heating. Under suitable ambient conditions, approximately 35% of total building cooling load was met by the solar driven desiccant cooling system. Continuous monitoring has also helped understand some of the operational issues of the system.  相似文献   

20.
太阳能散热器采暖与热水供应技术实验研究   总被引:3,自引:2,他引:1  
张思思  董重成  陈玲 《节能技术》2010,28(2):173-177
通过太阳能采暖与热水供应系统在夏热冬冷地区的实验,测试了系统采暖及提供生活热水时,太阳能集热系统、采暖系统、辅助热源等部分的相关数据,并在实验中分别对采暖房间与非采暖房间的室内温度进行了测试。通过实验数据分析了太阳能采暖与热水供应系统在夏热冬冷地区使用应考虑的问题,并给出系统设计及运行过程中提高系统性能的有关建议,为有关设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号