首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
在SiC粉中添加MoSi2粉,采用模压成型、无压烧成方法制备MoSi2-再结晶SiC(RSiC)复合材料。利用扫描电子显微镜、X射线衍射和等温氧化法研究复合材料的高温抗氧化性能及氧化机理。结果表明,所得复合材料中SiC为6H型,部分MoSi2转变为六方结构M04.8Si3Co6,添加MoSi2前后样品的氧化产物均为方石英,样品表面生成的氧化膜形貌相似。氧化过程中样品质量变化与时间关系遵循抛物线规律,随MoSi2添加量增加,复合材料的抗氧化性能显著提高,其中,添加20%(质量分数)MoSi2所得复合材料在1500℃循环氧化100h后质量增加量仅为未添加MoSh样品的37%。当MoSi2添加量为10%时,复合材料的抗氧化性能随样品烧成温度的升高先提高后降低,2300℃烧成所得材料有较好的高温抗氧化性能,其氧化速率常数为0.99mg^2/(cm^4·h)。在氧化初始阶段,M04.8Si3C06和MoSi2首先发生氧化反应,随氧化时间增加,M04.8Si3Co6和MoSi2消耗殆尽,此后的氧化则主要为M05Si3和SiC的氧化。Si02膜的致密性和膜厚度与膜中M05Si3的含量有关。  相似文献   

2.
A simple process for depositing a coating of silicon carbide (SiC) crystallites ∼10 nm in size onto diamond particles has been developed. SiO powders react with diamond in a vacuum at 1350°C to form a uniform β-SiC polycrystalline layer ∼60 nm thick. The SiC coating improves the oxidation resistance of the diamond. A cemented carbide material containing 20-vol%-SiC-coated diamond particles was sintered to a relative density of 99.5% by pulsed-electric-current sintering. A Vickers hardness and indentation fracture toughness of 15 GPa and 16.3 MPa·m1/2, respectively, were obtained. This toughness is two times higher than that of cemented carbide containing no particles. The higher toughness is attributed to deflection and blockage of crack propagation by the diamond particles.  相似文献   

3.
Multiwalled carbon nanotubes (MWCNTs) were coated with a SiC layer using SiO vapor. The growth mechanism of SiC and the oxidation resistance of the SiC-coated MWCNTs were studied. The growth of the SiC layer was controlled by adjusting the partial pressure of CO2 using carbon felt placed in a crucible. The nanometer-sized SiC particles were deposited onto the tubes by the reaction between SiO( g ) and CO( g ). On the other hand, the thin surface of the MWCNTs was converted to the SiC layer when the carbon felt was not used. The oxidation durability of MWCNTs was improved by the SiC coating. MWCNTs were oxidized completely in air at 650°C for 60 min. However, about 90 mass% of the SiC-coated MWCNTs remained after the same oxidation test.  相似文献   

4.
A SiC–∼50 vol% mullite-particulate composite fabricated by melt infiltration was found to exhibit excellent oxidation resistance at temperatures >1500°C in air. Cristobalite was found on the surface of samples after 100 h oxidation at temperatures of 1515°, 1620°, and 1650°C. The oxidation rate constant at 1515°C was almost comparable to hot-pressed bulk SiC, and at least 1 order of magnitude lower than the lowest value for the oxide-matrix SiC-particulate composites made by conventional processes, as reported in the literature and made by melt infiltration in the present study.  相似文献   

5.
The high-temperature oxidation of additively manufactured and chemically vapor infiltrated (3D-printed SiC) has been compared to chemical vapor deposited (CVD) SiC. 100-h isothermal exposures were conducted at 1425° and 1300°C at 1 atm under both dry air and steam environments. A SiC reaction tube was utilized to reduce silica volatility. After steam oxidation at 1425° and 1300°C, on the 3D-printed SiC surface, which was intrinsically rougher than the CVD surface, scales were 70%–90% thicker at the convex regions compared to concave/flat regions. In the convex regions, large cracks perpendicular to the oxidizing interface were observed. After dry air oxidation, scale thicknesses were comparable between 3D-printed SiC and CVD SiC, regardless of geometry. Finite element modeling, conducted to elucidate the relationship between SiC geometry and ß- to α-cristobalite transformation stress, determined cristobalite transformation tensile stresses to be on the order of 103 MPa during cool down, assuming a 6 vol% reduction. Compared to flat SiC substrates, tensile transformation stresses were elevated at concave regions and relaxed at convex regions. Combined with specimen mass gain (accounting for the rougher surface) of 3D-printed SiC being 15%–32% higher for 3D-printed SiC after 1300°C and 1425°C steam oxidation, the work presented concludes that the increased oxidation of 3D-printed SiC is primarily caused by tensile hoop stresses driven by oxidation volume expansion. Lastly, the efficacy of the 3D-printing method is demonstrated through the production of tristructural isotropic imbedded 3D-printed SiC fuel forms.  相似文献   

6.
HIP-Sintered Composites of C (Diamond)/SiC   总被引:1,自引:0,他引:1  
Diamond (carbon) and silicon powders were mixed and HIPed under temperatures of 1300°–1500°C and pressure at 50 MPa for 30 min. When heated at >1300°C, the products were >90% sintered compacts. Density and bending strength were measured. The highest values of 3.3 g/cm3 and 750 MPa were obtained when the starting material was a mixture of fine and coarse-grained diamond and silicon powder. The photomicrograph of polished surface of the product revealed that it consisted primarily of two types of substances with few pores. XRD showed the coexistence of diamond and SiC. No trace of conversion reaction from diamond to graphite was seen, although the sample was treated under conditions in which diamond was thermodynamically metastable. The summarized results suggest that the HIP process can be a useful way to synthesize diamond/SiC composites.  相似文献   

7.
SiC-fiber–reinforced SiC matrix composite cladding for light water reactor fuel elements must withstand high-temperature steam oxidation in a loss-of-coolant accident scenario (LOCA). Current composite designs include an outer monolithic SiC layer, in part, to increase steam oxidation resistance. However, it is not clear how such a structure would behave under high-temperature steam in the case when the monolithic layer cracks and carbon interphases and SiC fibers are exposed to the environment. To fill this knowledge gap, stress-rupture tests of prototypic SiC composite cladding at 1000°C under steam and inert environments were conducted. The applied stress was ∼120 MPa, which was beyond the initial cracking stress. The failure lifetime under steam was 400–1300 s, while 75% of the composite specimens did not fail after 3 h of total exposure under inert gases. Microstructural observations suggest that steam oxidation activated slow crack growth in the fibers, which led to failure of the composite. The results from this study suggest that stress rupture in steam environments could be a limiting factor of the cladding under reactor LOCA conditions.  相似文献   

8.
In this study, continuous SiC-ZrB2 composite ceramic fibers were synthesized from a novel pre-ceramic polymer of polyzirconocenecarbosilane (PZCS) via melt spinning, electron beam cross-linking, pyrolysis, and finally sintering at 1800°C under argon. The ZrB2 particles with an average grain size of 30.7 nm were found to be uniformly dispersed in the SiC with a mean size of 59.7 nm, as calculated using the Scherrer equation. The polycrystalline fibers exhibit dense morphologies without any obvious holes or cracks. The tensile strength of the fibers was greater than 2.0 GPa, and their elastic modulus was ~380 GPa. After oxidation at 1200°C for 1 hour, the strength of the fibers did not decrease despite a small loss of elastic modulus. Compared to the advanced commercial SiC fibers of Tyranno SA, the fibers exhibited improved high-temperature creep resistance in the temperature range 1300-1500°C.  相似文献   

9.
Five silicon carbide ceramics with various additives were evaluated for oxidation resistance at 1300°C in flowing dry and wet air. In the dry atmosphere, the oxidation of the five samples was diffusion-controlled, and in wet atmosphere they exhibited a linear relation beween weight gain by oxidation and water vapor content. Water vapor in the atmosphere strongly accelerated oxidation. The influence of oxidation on room-temperature strength was complex, but the samples were not as affected by oxidation.  相似文献   

10.
We investigated the oxidation kinetics of SiC materials in the form of powders (average dimension 4 μm) in the temperature range 1100°–1500°C in dry air. The oxidation process was monitored through the relative mass gain in a thermobalance. As the specific surface area of the particles was measured, the recorded mass gain could be converted into the corresponding oxide thickness. The oxidation isotherms were fitted to a linear-parabolic equation, and the parabolic rate constant was evaluated. Up to 1400°C, temperature dependence can be described by a single activation energy of 179 kJ/mol, which increases in the 1400°–1500°C temperature range. These results are compared with the oxidation behavior of sintered polycrystalline and monocrystalline SiC materials.  相似文献   

11.
The oxidation behavior of a silicon wafer, chemically vapor-deposited SiC, and single-crystal SiC was investigated in an oxygen—2%–7% ozone gas mixture at 973 K. The thickness of the oxide film that formed during oxidation was measured by ellipsometry. The oxidation rates in the ozone-containing atmosphere were much higher than those in a pure oxygen atmosphere. The parabolic oxidation kinetics were observed for both silicon and SiC. The parabolic rate constants varied linearly with the ozone-gas partial pressure. Inward diffusion of atomic oxygen formed by the dissociation of ozone gas through the SiO2 film apparently was the rate-controlling process.  相似文献   

12.
Hi Nicalon, Hi Nicalon S, Sylramic, and Sylramic iBN SiC fibers were exposed to ~60 μg/cm2 of Na2SO4 in a 0.1% SO2/O2 gaseous environment for times between 0.75 and 24 h at 1000°C. After exposure, the corrosion products were characterized using SEM, EDS, ICP-OES, TEM, and EFTEM to determine their high-temperature resistance to Na2SO4 and key reaction mechanisms. All SiC fiber types tested in this work exhibited little resistance to Na2SO4 deposit-induced attack relative to their behavior in dry O2 environments. It was found that Hi-Nicalon displayed the least resistance to Na2SO4 deposit-induced attack due to excess carbon content resulting in the formation of a highly porous crystalline oxide and promotion of basic corrosion conditions. All fiber types formed a crystalline SiO2 reaction product, either cristobalite or tridymite. Sylramic and Sylramic iBN formed a crystalline SiO2 reaction layer containing TiO2 needles due oxidation of TiB2 particles. Additionally, Na2SO4 deposits resulted in pitting of all fiber surfaces.  相似文献   

13.
SiC‐based composites exhibit oxidative embrittlement at intermediate temperatures. Although the mechanisms of internal oxidation in composites with initially hermetic matrices have been studied extensively, comparable studies on composites with semipermeable matrices, such as those produced by polymer infiltration and pyrolysis, have not been reported. The present article focuses on the latter class of composites, specifically a SiCf /SiCNm with a dual BN/Si3N4 fiber coating. It describes detailed SEM and TEM analyses of the microstructure before and after oxidation in dry air or water vapor at 800°C. The results show that internal oxidation is more aggressive in water vapor and occurs appreciably even in the absence of an applied stress. The sequence of oxidation of the constituent phases appears to be consistent with the underlying thermodynamic hierarchy for the respective oxidation reactions. Notably, contrary to existing models based on preferential oxidation of BN coatings, oxidation occurs first on the SiC fiber surfaces and the Si3N4 overcoat; crystalline BN remains even after significant fiber and matrix oxidation has occurred. The results are discussed in terms of rate‐controlling kinetic processes, the effect of oxidant type, and applied stress.  相似文献   

14.
Silicon carbide/silicon carbide (SiC/SiC) composites are often used in oxidizing environments at high temperatures. Measurements of the thermal conductance of the oxide layer provide a way to better understand the oxidation process with high spatial resolution. We use time-domain thermoreflectance (TDTR) to map the thermal conductance of the oxide layer and the thermal conductivity of the SiC/SiC composite with a spatial resolution of 3 μm. Heterodyne detection using a 50-kHz-modulated probe beam and a 10-MHz-modulated pump suppresses the coherent pick-up and enables faster data acquisition than what has previously been possible using sequential demodulation. By analyzing the noise of the measured signals, we find that in the limit of small integration time constants or low laser powers, the dominant source of noise is the input noise of the preamplifier. The thermal conductance of the oxide that forms on the fiber region is lower than the oxide on the matrix due to small differences in thickness and thermal conductivity.  相似文献   

15.
渗硅碳化硅材料的高温氧化   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了全碳粉反应渗硅碳化硅(PCRBSC)材料,在1300℃静态空气中的高温氧化行为.研究结果表明:PCRBSC材料的氧化过程遵循直线-抛物线规律,其结构对高温氧化有很大的影响,特别是游离硅fsi和游离碳fc的含量对氧化影响更大,fsi含量高的PCRBSC材料单位面积氧化增重(Δm/s)明显,fc含量高的PCRBSC材料氧化后表现为先减重后增重,氧化层断口经扫描电镜观察有明显的气孔存在.  相似文献   

16.
β-sialon结合SiC复相材料的分相抗氧化行为   总被引:4,自引:1,他引:4  
对粘土类原料碳热还原及氮化反应法合成的β-sialon结合SiC复相耐火陶瓷材料进行了不同氧化条件下的抗氧化性实验。研究表明:1300℃时的氧化过程在12h内为化学反应控制阶段,12h后为扩散控制阶段。扩散控制阶段反应符合Ginsterlinger扩散动力学关系。首次分别得到复合状态下的β-sialon基质相、SiC颗粒相及β-sialon结合SiC复合相在1300℃下的分相扩散控制型抗氧化反应动力学方程,从各相的扩散控制型反应级数确认了β-sialon基质相对SiC颗粒相的高温氧化保护作用以及复相材料具有的优异抗高温氧化性能。  相似文献   

17.
A micro four‐layer SiC coating, which includes inner transition layer, fine‐grained layer, dense bulk layer, and outer loose layer, was fabricated on the matrix graphite spheres of high‐temperature gas‐cooled reactor fuel elements to improve the oxidation‐resistant property by a two‐step pack cementation process. According to the experiment results, the micro four‐layer can be differentiated by SiC grain size and microstructure variation. The oxidation tests at 1773 K for 200 h reveal that the coating structure could effectively improve the oxidation resistance of matrix graphite spheres with a weight gain of 0.52 wt%, and the fine‐grained and dense bulk layers are evidenced as two main antioxidation layers. Although the thermal expansion coefficients of SiC and matrix graphite do not match each other so well, no obvious stress cracking was observed after thermal shocking tests from 1773 K to room temperature for 100 times.  相似文献   

18.
碳化硅基材料具有优良的高温性能,但作为非氧化物陶瓷,碳化硅材料的高温氧化造成的性能衰减限制了其进一步的广泛应用.本文通过分析碳化硅的氧化机理,对比和总结了碳化硅抗氧化涂层的制备方法和涂层体系,并结合实际工作对碳化硅抗氧化涂层的研究提出了具体的见解.  相似文献   

19.
Polycarbosilane-derived SiC fibers (CG Nicalon, Hi-Nicalon, and Hi-Nicalon type S) were exposed for 1–100 h at 1273–1673 K in air. Oxide layer growth and changes in tensile strength for these fibers were examined after exposure. The three types of SiC fibers decreased in strength as the oxide layer thickness increased. Fracture origins were located near the oxide layer–fiber interface. The Hi-Nicalon type S showed better oxidation resistance than the other polycarbosilane-derived SiC fibers after exposure in air at 1673 K for 10 h. This result was attributed to the nature of the silicon oxide layer on the surface of the SiC fibers.  相似文献   

20.
In situ whisker growth was observed during heat treatment of allylhydridopolycarbosilane (AHPCS) and SiC powder in the temperature range of 1250°–1350°C. TEM equipped with an electron energy loss spectrometer (EELS) verified that the banded whiskers are twinned single-grained β-SiC. Convergent beam electron diffraction patterns (CBED) of the whisker tips were consistent with formation by a vapor–solid (VS) mechanism. The effects of process variables on whisker growth were addressed. The mechanism of whisker growth was discussed and attributed to the reaction between the gaseous products of the polymers AHPCS and polycarbosilane (PCS). Thermal decomposition behavior of the polymers was followed to relate gas evolution to whisker formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号