首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of vanadium oxide loading in the supported VOx/Al2O3 catalyst system upon the dehydrated surface vanadia molecular structure, surface acidic properties, reduction characteristics and the catalytic oxidative dehydrogenation (ODH) of ethane to ethylene was investigated. Characterization of the supported VOx/Al2O3 catalysts by XPS surface analysis and Raman spectroscopy revealed that vanadia was highly dispersed on the Al2O3 support as a two-dimensional surface VOx overlayer with monolayer surface coverage corresponding to 9 V/nm2. Furthermore, Raman revealed that the extent of polymerization of surface VOx species increases with surface vanadia coverage in the sub-monolayer region. Pyridine chemisorption-IR studies revealed that the number of surface Brønsted acid sites increases with increasing surface VOx coverage and parallels the extent of polymerization in the sub-monolayer region. The reducibility of the surface VOx species was monitored by both H2-TPR and in situ Raman spectroscopy and also revealed that the reducibility of the surface VOx species increases with surface VOx coverage and parallels the extent of polymerization in the sub-monolayer region. The fraction of monomeric and polymeric surface VOx species has been quantitatively calculated by a novel UV–Vis DRS method. The overall ethane ODH TOF value, however, is constant with surface vanadia coverage in the sub-monolayer region. The constant ethane TOF reveals that both isolated and polymeric surface VOx species possess essentially the same TOF value for ethane activation. The reducibility and Brønsted acidity of the surface VOx species, however, do affect the ethylene selectivity. The highest selectivity to ethylene was obtained at a surface vanadia density of 2.2 V/nm2, which corresponds to a little more than 0.25 monolayer coverage. Below 2.2 V/nm2, exposed Al support cations are responsible for converting ethylene to CO. Above 2.2 V/nm2, the enhanced reducibility and surface Brønsted acidity appear to decrease the ethylene selectivity, which may also be due to higher conversion levels. Above monolayer coverage, crystalline V2O5 nanoparticles are also present and do not contribute to ethane activation, but are responsible for unselective conversion of ethylene to CO. The crystalline V2O5 nanoparticles also react with the Al2O3 support at elevated temperatures via a solid-state reaction to form crystalline AlVO4, which suppresses ethylene combustion of the crystalline V2O5 nanoparticles. The molecular structure–chemical characteristics of the surface VOx species demonstrate that neither the terminal VO nor bridging VOV bonds influence the chemical properties of the supported VOx/Al2O3 catalysts, and that the bridging VOAl bond represents the catalytic active site for ethane activation.  相似文献   

2.
Novel crystalline MoVO oxide was employed as the catalyst in the aerobic oxidation of alcohols to the corresponding carbonyl compounds. Reactions were mainly conducted at 353 K in pure oxygen or air (1 atm). The selectivities for benzaldehydes were more than 95% in all cases. The conversions of benzyl alcohols varied from 10% to 99% depending on the substituent. A Hammett plot gave a moderate ρ-value of −0.249 (r2 = 0.98), suggesting that the reaction processes may involve hydride abstraction. The oxidation of primary alkanols afforded aldehydes, and secondary alcohols were mainly dehydrated to olefins. It was found that the conversion of linear alkanols decreased with the length of alkanols. Kinetic analysis showed that catalytic reaction rate was first-order dependent on the concentrations of substrate and of catalyst. The apparent activation energy was estimated to be 45.7 kJ mol−1. Catalytic reactions took place on the 6- or 7-member rings on the ab basal plane, where highly dense unsaturated metal cation centers and oxygen anion might serve as catalytic active sites.  相似文献   

3.
Pt/ZrO2 catalysts for the water–gas shift (WGS) were promoted with various amounts of vanadia. Analyses by XRD, N2 adsorption, Raman, and UV–vis DRS showed that vanadia is present below monolayer coverage as monovanadate and polyvanadate, with the former dominating at lower loadings, and that following monolayer formation, VO5 species appear, with the eventual generation of V2O5 and ZrV2O7 for a vanadia weight loading of 13%. Though in all cases vanadia induced an enhancement in WGS activity, the best catalyst, that contained 3 wt.% of vanadia, gave a rate that was nearly double that of the unpromoted Pt/ZrO2. That superior global activity probably results from the monovanadate that is the main species at low loadings. It is believed that monovanadate promotes the WGS by rendering the support's surface more oxidizing through its VOZr bonds.  相似文献   

4.
Fe1−xCox nanowires in self-assembled arrays with varying compositions were produced by the template-assisted pulsed electrochemical deposition method. The structural and magnetic properties of the arrays were investigated using several experimental techniques. TEM analyses indicated that the nanowires were regular, uniform, 8 μm in length and 50 nm in diameter. The results of X-ray diffraction indicated that the body-centered-cubic (bcc) (α), face-centered-cubic (fcc) (γ), and hexagonal-close-packed (hcp) () Fe–Co phases appeared in different compositions. Magnetic measurements showed that the coercivity and squareness of the hysteresis loops of the Fe1−xCox changed with their compositions, which may be attributable to shape anisotropy. The room temperature 57Fe Mössbauer spectra of the arrays of the Fe1−xCox nanowires revealed strong shape anisotropy.  相似文献   

5.
The selective oxidation of propane to oxygenated products (isopropanol, n-propanol, propionic aldehyde and acetone) mediated by the Fe(II)/H2O2 Fenton system at 80 °C in the presence of solid acid and superacid promoters containing S and F moieties has been studied. The occurrence of a radical reaction pathway accounting for the activation of the CH bonds of the propane molecule by OH radicals has been proved by assessing the inhibiting effect of both Cl and NO3 radical scavengers and organic (CH3COOH, CH3CN, DMSO) reaction media on the reaction pattern. S and F functionalities of several solid agents promote the electron transfer processes controlling the H2O2 activation. Any effect of the Brönsted acid features of the solid promoters on the reaction kinetics and pathway has been disregarded.  相似文献   

6.
Thin films of organic pigments were prepared at higher than pH 1 by the contact plating method using an anionic surfactant (AZNa, first figure of this article (part c) (n = 4)) containing an azobenzene moiety. The effects of hydrophilic group of the surfactants on the rate of following reaction of the reduction product were studied by cyclic voltammetry. The positive shift of the reduction peak potential of AZNa compared to those of cationic and non-ionic surfactants was ascribed to higher rate of following reaction of reduction product due to the presence of the anionic hydrophilic group of the surfactant. The present investigation revealed that the anionic hydrophilic group accelerates the cleavage of the NN bond of the azobenzene group. This phenomenon enabled us to prepare the organic thin film at higher pH condition.  相似文献   

7.
Several single phasic MoVO-based mixed oxides, all of which have a layer structure in the direction of c-axis and a high dimensional arrangement of metal octahedra in a–b plane, were synthesized by hydrothermal method and their catalytic performance in the selective oxidation of propane to acrylic acid were compared in order to elucidate structure effects on catalytic property and roles of constituent elements. It was clearly demonstrated that the catalyst with the particular arrangement of MO6 (M = Mo, V) octahedra forming slabs with pentagonal, hexagonal and heptagonal rings in (0 0 1) plane of orthorhombic structure was exclusively superior both in the propane oxidation activity and in the selectivity to acrylic acid to the other related Mo- and V-based layer oxide catalysts consisting of either pentagonal or hexagonal ring unit. The role of constituent elements was clarified by the comparison of catalytic performance of MoVO, MoVTeO and MoVTeNbO, all of which have the same orthorhombic structure. Mo and V, which were indispensable elements for the structure formation, were found to be responsible for the catalytic activity for propane oxidation. Te located in the central position of the hexagonal ring promoted the conversion of intermediate propene effectively, resulting in a high selectivity to acrylic acid. The introduced Nb occupied the same structural position of V and the resulting catalyst clearly showed the improved selectively to acrylic acid particularly at high conversion region, because the further oxidation of acrylic acid to COx was suppressed.  相似文献   

8.
The effect of the ligand macrocycle (phenylporphyrin (PP) or phthalocyanine (Pc)) and of the ligand substituent (NH2 or SO3) on the catalytic activity for the electro-oxidation in a pH 11 buffer electrolyte of 2- and 4-chlorophenol (2-CP and 4-CP), 2,4- and 2,6-dichlorophenol (2,4-DCP and 2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) at glassy carbon electrodes modified with electropolymerized Ni(II) macrocycles was studied. The polyphenolic residue deposited at the electrode surface was characterized by cyclic voltammetry, impedance measurements, ex situ Fourier transform infrared spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). A band of aliphatic CO stretching in the IR spectrum of the fouling film produced by potential cycling in 2,4,6-TCP indicated that the aromatic ring had been broken, yielding ketones, aldehydes and/or carboxylic acids. The sulphonated Ni(II) polymers, which showed the Ni(III)/Ni(II) process in the CV, had XP spectra typical of paramagnetic Ni(II), indicating that they contained Ni(OH)2 clusters. On the contrary, the CVs of the amino Ni(II) did not show the Ni(III)/Ni(II) process at all, this process appearing only after previous activation by potential cycling, and only to a small extent. As was to be expected, the XP spectra of activated amino films corresponded to diamagnetic Ni(II), showing that the concentration of Ni(OH)2 clusters was very small. The amino films were less active than the sulpho films for the oxidation of chlorophenols, in agreement with the lower concentration of Ni(OH)2 clusters in the former films. For all electrodes the highest activity was observed for 2,4,6-TCP, since its oxidation yields a phenolic residue which is much more porous than those produced by the other CPs.  相似文献   

9.
Two hybrid compounds based on {Mo5O16} ribbon-like chains, [M(3-pt)2(Mo5O16)]·H2O (M = Co, Mn) (1 and 2) {3-pt = 5-(3-pyridyl)-tetrazole}, have been hydrothermally synthesized and characterized by single crystal X-ray diffraction. Three-dimensional Mo/O/MII/tetrazole frameworks of the title compounds are constructed from 1D infinite ribbon-like [Mo5O16]2− chains covalently linked through [M(3-ptz)]2+ fragments via OM and NMo coordinate bonds. It is noteworthy that the isostructural compounds contain an unprecedented 3D bimetallic oxide network with 16-membered wheel clusters in which two parallel interdigitated stacks of 3-pt ligands are trapped. Remarkably, the title complexes represent the first two examples of the solid materials containing {Mo5O16} ribbon-like chains.  相似文献   

10.
Thermal and mechanical properties of polycrystalline La1−xAxNbO4 (x = 0, 0.005, 0.02 and A = Ca, Sr and Ba) are reported. The materials possess a ferroelastic to paraelastic phase transition close to 500 °C, and the linear thermal expansion is significantly lower (8.6 ± 0.5 × 10−6 °C−1) for the paraelastic phase compared to the ferroelastic phase (15 ± 3 × 10−6 °C−1). The hardness was significantly higher for acceptor doped materials (6 GPa) compared to pure LaNbO4 (3 GPa) due to a significantly smaller average grain size. The fracture toughness of La0.98Sr0.02NbO4, measured by single edge V-notched beam method, was 1.7 ± 0.2 MPa m1/2 independent of temperature up to 600 °C. The ferroelastic properties of the materials were confirmed by non-linear relationships between stress and strain during compression/decompression, a remnant strain after decompression and the presence of ferroelastic domains. The mechanical properties of LaNbO4-based materials are discussed with focus on ferroelasticity, microcracking due to crystallographic anisotropy and pinning of ferroelastic domain boundaries.  相似文献   

11.
The preparation of TiO2 nanofilm was conducted on common glass via the sol–gel process. Glacial acetic acid and diethanolamine were used as inhibitors to prepare acidic and alkaline TiO2 sol, respectively. XRD, SEM, and EDS characterization showed that the film prepared from acidic TiO2 sol had a narrow particle size distribution of 15–30 nm and relatively poor particle crystallization while in the case of the film from alkaline TiO2 sol the nanoparticles were in a wide range of 10–80 nm and well crystallized. The photolysis evaluation through MO degradation revealed that the film from acidic sol possessed apparently better photocatalytic activity than that from alkaline sol. Heat treatment with longer time led to a 50% increase of the photocatalytic activity for the film.  相似文献   

12.
A two-step method, combining with sol–gel and mechanical alloying (MA) method, was used to fabricate the tungsten and nitrogen co-doped TiO2 nano-powders ((W, N) co-doped TiO2 NPs). The (W, N) co-doped TiO2 NPs showed strong absorbance in visible range, as long as 650 nm. Enhanced photocatalytic activities under visible light irradiation were also observed from the results of photodegradation experiments and chemical oxygen demand (COD) analysis. Physical, chemical, and optical properties of the samples were investigated. Possible reasons for the enhanced photocatalytic activities were analyzed based on the experimental results. Oxygen vacancies detected by electron spin response (ESR) spectra, acting as trapping agencies for electrons (e) to produce active oxygen species (O2−), were proved to be the main cause for the improved photocatalytic performances.  相似文献   

13.
(K0.5−xLix)Na0.5(Nb1−ySby)O3 (KLNNSxy, x = 0–4 mol% and y = 0–8 mol%) lead-free piezoelectric ceramics were prepared by the conventional mixed oxide method. The denser microstructure and better electrical properties of the ceramics were obtained as compared to the pure K0.5Na0.5NbO3 ceramic. The temperature stability of the electrical properties of the ceramics was also investigated. The experimental results show that the KLNNS2.5–5 ceramic exhibits good electrical properties (kp  49%, k31  30% and , tan δ  0.019), and possesses good temperature stability in the temperature range of −40 to 85 °C. The related mechanisms for improved electrical properties and temperature stability were also discussed. Moreover, buzzers based on the KLNNS2.5–5 ceramic have been fabricated and their characterization is presented. These results show that the KLNNS2.5–5 ceramic is a promising lead-free material for practical application in buzzers.  相似文献   

14.
15.
The photocatalytic mineralization of phenol catalyzed by pure (anatase, rutile) and mixed phase hydrothermal TiO2 was studied in aqueous solution employing different oxidative agents, H2O2 and O2. In the case of H2O2, rutile particles, having large dimensions and high aspect ratio (size: 30–70 nm × 150–350 nm), display the highest catalytic activity due to their low tendency to recombine electrons and holes generated by UV irradiation. By using water dissolved gaseous O2, the catalytic TiO2 activity generally decreases and rutile displays the lowest efficacy. In fact, oxygen preferentially chemisorbs at the surface of the nanosized particles of anatase (5–15 nm) and acts as effective electron scavenger, inhibiting the electron-hole recombination. The number of electron and hole traps (Ti3+, O2 and O) and the rate of formation of the short-lived hydroxyl radicals OH under UV irradiation, were evaluated by electron paramagnetic resonance (EPR). A correlation was suggested among the amount of the charge carrier centers, the rate of formation of OH radicals and the catalyst photoactivity. This confirms that the photocatalytic properties depend on the possibility that electrons and holes separately interact with the oxidative agents at the TiO2 surface, inducing the formation of OH radicals.  相似文献   

16.
Vanadium-containing hexagonal mesoporous silica catalysts were tested in oxidative dehydrogenation of ethane. V-HMS catalysts (0.3–9.0 wt.% V) were prepared by impregnation with solution of vanadyl acetylacetonate, and by incorporation of vanadium in the synthesis process. The prepared catalysts achieved a different distribution of vanadium species (isolated monomeric units with tetrahedral coordination, oligomeric units connected by VOV bonds up to distorted tetrahedral coordination, two-dimensional polymeric units in octahedral coordination, and bulk vanadium oxides). The contribution deals with the understanding of the relationship between the distribution of vanadium species and their activity in ODH of ethane. It has been found that both monomeric and oligomeric vanadium species play important role in ODH of ethane. The activity correlated with the population of oligomeric tetrahedrally coordinated vanadium species, which were evidenced by the UV–vis band at 315 nm. To analyze this effect, V-HMS catalysts were characterized by means of UV–vis spectroscopy, H2-TPR and N2-adsorption.  相似文献   

17.
In this paper, HgCl2 was loaded by impregnation method to study its property influence and poisoning mechanism on V2O5-WO3/TiO2 SCR-DeNOx catalyst. For HgCl2-containing catalysts, deactivation was observed in simulated gas stream, and its catalytic activity declined with the increase of HgCl2 loadings. Brønsted acid sites (VOH) and VO bond were affected evidently by HgCl2, new NH3 adsorption site ClVOH was generated after HgCl2 addition. Interactions between HgCl2 and V2O5 resulted in the loss of SCR active sites, and –HgCl existed as the stable form on the bridge site. Finally, the probable schematic diagram of HgCl2 poisoning mechanism was also proposed.  相似文献   

18.
In this study, hierarchically porous bicrystalline nitrogen-doped titania (N-doped TiO2) monolithic material was fabricated by a simple two-step approach: (i) preparation of TiO2 porous monolith by a sol–gel process of titanium alkoxide in a mild condition utilizing a chelating agent and mineral salt and (ii) annealing of TiO2 porous monolith obtained under a modest flow of ammonia gas at 700 °C for 2 h. The phase composition, crystal structure, morphology, pore structure, and porous properties of the final product were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), mercury porosimetry, and nitrogen physisorption measurement, respectively. The resultant N-doped TiO2 porous monolith possesses a bicrystalline (anatase and rutile) framework with a well-defined macroporosity. The results from X-ray photoelectron spectroscopy (XPS) confirm the formation of OTiN bonds in the N-doped TiO2 porous monolith. The photocatalytic activity of N-doped TiO2 porous monolith was evaluated by the photodegradation of Rhodamine B over the samples under visible light. Nearly 50% of Rhodamine B in aqueous solution was efficiently degraded by N-doped TiO2 porous monolith with the mixed-phase of anatase and rutile under visible light within 120 min.  相似文献   

19.
In this study, we developed an immobilized TiO2 semiconductor on an ITO glass substrate (TiO2/ITO) and investigated its photocatalytic and electrochemical performance. The TiO2/ITO samples were prepared via a spin-coating process followed by calcination and were used for the photocatalytic or electrochemical degradation of an organic dye pollutant. The measured photocatalytic performance was comparable to that reported in previous publications; however, a remarkable result was obtained in our electrochemical system. The formation of hydroxyl radicals (OH) strongly dominated the electrochemical system, which resulted in outstanding degradation performance. Therefore, we propose a commercializable photoelectrochemical system that can maximize the degradation of pollutants in wastewater treatment plants.  相似文献   

20.
In this paper, functional macromolecule poly(methacrylic acid) (PMAA) was grafted on the surface of silica gel particles using 3-methacryloxypropyl trimethoxysilane (MPS) as intermedia, and the grafted particle PMAA/SiO2 with strong adsorption ability for phenol was prepared. The adsorption mechanism and properties of PMAA/SiO2 for phenol were researched by static and dynamic methods. The experimental results showed that PMAA/SiO2 possesses strong adsorption ability for phenol with interaction of three kinds of hydrogen bonds including peculiar O–Hπ hydrogen bond (aromatic hydrogen bond) and O–HOC π hydrogen bond. The saturated adsorption amount could reach up to 162.88 mg g−1. The empirical Freundlich isotherm was found to describe well the equilibrium adsorption data. pH and temperature were found to have great influence on the adsorption amount. Finally, PMAA/SiO2 was observed to possess excellent reusability properties as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号