首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An as-received reactor pressure vessel (RPV) steel SA508 class 3 (SA508 Cl.3) has been subjected to uniaxial tension tests in the strain-rate range of 6.67 × 10−5 s−1 to 1.2 × 10−2 s−1 and the temperature range of 298 K to 673 K to investigate the effects of temperature and strain rate on its mechanical properties. It was found that the region of dynamic strain aging (DSA) was in the temperature range of 523–623 K at a strain rate of 1.2 × 10−3 s−1, 473–573 K at 1.2 × 10−4 s−1, and 473–573 K at 6.67 × 10−5 s−1, respectively. Serrated stress–strain behaviors, predominately consisting of type A, B, and C, have been observed in these temperatures and strain-rate ranges. The solutes responsible for DSA have been identified to be carbon and nitrogen, and nitrogen atoms play a more important role. The relative DSA mechanisms for this RPV steel are discussed.  相似文献   

2.
The compressive properties of ternary compound Cr2AlC at different temperatures and strain rates were studied. When tested at a strain rate of 5.6 × 10−4 s−1, the compressive strength decreases continuously from 997 ± 29 MPa at room temperature to 523 ± 7 MPa at 900 °C. The ductile-to-brittle transition temperature is measured to be in the range of 700 to 800 °C. When tested in the strain rate range of 5.6 × 10−5 to 5.6 × 10−3 s−1, Cr2AlC fails in a brittle mode at room temperature, whereas the deformation mode changes from a brittle to a ductile as the strain rate is lower than 5.6 × 10−4 s−1 when compressed at 800 °C. The compressive strength increases slightly with increasing strain rate at room temperature and it is less dependent on strain rate when tested at 800 °C. The plastic deformation mechanism of Cr2AlC was discussed in terms of dislocation-related activities, such as kink band formation, delamination, decohesion of grain boundary, and microcrack formation.  相似文献   

3.
The deformation behavior of coarse-grained AZ31 magnesium alloy was examined in creep at low temperatures below 0.5 T m and low strain rates below 5 × 10−4 s−1. The creep test was conducted in the temperature range between 423 and 473 K (0.46–0.51 T m) under various constant stresses covering the strain rate range 5 × 10−8 s−1–5 × 10−4 s−1. All of the creep curves exhibited two types depending on stress level. At low stress (σ/G < 4 × 103), the creep curve was typical of class I behavior. However, at high stresses (σ/G > 4 × 103), the creep curve was typical of class II. At the low stress level, deformation could be well described by solute drag creep whereas at the high stress level, deformation could be well described by dislocation climb creep associated with pipe diffusion or lattice diffusion. The transition of deformation mechanism from solute drag creep to dislocation climb creep, on the other hand, could be explained in terms of solute-atmosphere-breakaway concept.  相似文献   

4.
Sheet tensile test pieces were machined in three orientations from edge textured Ti-6Al-4V bar and tested at temperatures in the range 800 to 975‡ C and at strain rates of 3 × 10−4 and 1.5×10−3 sec−1. Bands of contiguous alpha grains aligned in the rolling direction caused local variations in the flow stress, strain to necking, strain rate sensitivity, plastic strain ratio values and surface roughness. Texture effects were only detected at the lowest test temperature (800‡C) and highest strain rate (1.5×10−3 sec−1).  相似文献   

5.
The hot deformation behavior of Al 2024 was studied by isothermal hot compression tests in the temperature range of 250–500 °C and strain rate range of 10−3 to 102 s−1 in a computer-controlled 50 kN servo-hydraulic universal testing machine (UTM). The results show that the flow stress of Al 2024 alloy increases with strain rate and decreases after a peak value, indicating dynamic recovery and recrystallization. The processing map exhibits two domains of optimum efficiency for hot deformation at different strains, including the low strain rate domain at 500 °C and between 10−2 and 10−1 s−1 and the high strain rate domain in 250 and 300 °C in the strain rate range of 101 to 102 s−1. An attempt has been made in this article to generate a new hybrid 4D process map which illustrates contours of power dissipation and instability in the 3D space of strain rate, temperature, and strain.  相似文献   

6.
Room temperature tensile test results of solution annealed 304 stainless steel at strain rates ranging between 5 × 10−4 and 1 × 10−1 s−1 reveal that with increase in strain rate yield strength increases and tensile strength decreases, both maintaining power–law relationships with strain rate. The decrease in tensile strength with increasing strain rate is attributed to the lesser amount of deformation-induced martensite formation and greater role of thermal softening over work hardening at higher strain rates. Tensile deformation of the steel is found to occur in three stages. The deformation transition strains are found to depend on strain rate in such a manner that Stage-I deformation (planar slip) is favoured at lower strain rate. A continuously decreasing linear function of strain rate sensitivity with true strain has been observed. Reasonably good estimation for the stress exponent relating dislocation velocity and stress has been made. The linear plot of reciprocal of strain rate sensitivity with true strain suggests that after some critical amount of deformation the increased dislocation density in austenite due to the formation of some critical amount of deformation-induced martensite plays important role in carrying out the imposed strain rate.  相似文献   

7.
Flow stress, Young’s Modulus, energy and strain of fracture of poly(methyl methacrylate) (PMMA) and polystyrene (PS) were studied under compressive loading at strain rates of 10−4–10 s−1 and temperatures from 293 K to temperatures ∼20 K below T g. It was found that the energy of fracture shows an increase in the quasi-static strain rate (10−4–10−3 s−1) region and becomes constant in the low strain rate (10−2–10 s−1) region, while the strain of fracture shows a slow decrease with rate over the strain rate range tested. The activation energies and volumes of PMMA and PS at yield stress, 20% and 30% strain were evaluated using Eyring’s theory of viscous flow. ΔG was found to be constant for all strain rates and strains for both PMMA and PS. The activation volume for both materials increased as a function of strain.  相似文献   

8.
A compressive split-Hopkinson pressure bar apparatus and transmission electron microscopy (TEM) are used to investigate the deformation behaviour and microstructural evolution of Ti–15Mo–5Zr–3Al alloy deformed at strain rates ranging from 8 × 102 s−1 to 8 × 103 s−1 and temperatures between 25 °C and 900 °C. In general, it is observed that the flow stress increases with increasing strain rate, but decreases with increasing temperature. The microstructural observations reveal that the strengthening effect evident in the deformed alloy is a result, primarily, of dislocations and the formation of α phase. The dislocation density increases with increasing strain rate, but decreases with increasing temperature. Additionally, the square root of the dislocation density varies linearly with the flow stress. The amount of α phase increases with increasing temperature below the β transus temperature. The maximum amount of α phase is formed at a temperature of 700 °C and results in the minimum fracture strain under the current loading conditions.  相似文献   

9.
Transparent and conducting SnO2 films are prepared at 500°C on quartz substrates by chemical vapour deposition technique, involving oxidation of SnCl2. The effect of oxygen gas flow rate on the properties of SnO2 films is reported. Oxygen with a flow rate from 0·8–1·35 lmin−1 was used as both carrier and oxidizing gas. Electrical and optical properties are studied for 150 nm thick films. The films obtained have a resistivity between 1·72 × 10−3 and 4·95 × 10−3 ohm cm and the average transmission in the visible region ranges 86–90%. The performance of these films was checked and the maximum figure of merit value of 2·03 × 10−3 ohm−1 was obtained with the films deposited at the flow rate of 1·16 lmin−1.  相似文献   

10.
The electrical and optical properties of In2O3 films prepared at room temperature by activated reactive evaporation have been studied. Hall effect measurements at room temperature show that the films have a relatively high mobility 15 cm2v−1s−1, high carrier concentration 2·97 × 1020/cm3, with a low resistivityρ = 1·35 × 10−3 ohm cm. As-prepared film is polycrystalline. It shows both direct and indirect allowed transitions with band gaps of 3·52eV and 2·94eV respectively.  相似文献   

11.
Compressive experiments on three types of rigid polyurethane foams were conducted by employing modified split Hopkinson pressure bars (SHPBs). The foam materials, which were based on polymethylene diisocyanate (PMDI), varied only in density (0.31 × 103, 0.41 × 103, and 0.55 × 103 kg/m3) and were compressed at strain rates as high as 3 × 103 s−1. Dynamic experiments were also performed on these three foam materials at temperatures ranging from 219 to 347 K, while maintaining a fixed high strain rate of ~3 × 103 s−1. In addition, an MTS materials testing frame was used to characterize the low-strain-rate compressive response of these three foam materials at room temperature (295 K). Our study determined the effects of density, strain rate, and temperature on the compressive response of the foam materials, resulting in a compressive stress–strain curve for each material.  相似文献   

12.
In the present study, the superplastic behavior of five Al–Mg–Zn alloys in coarse grain size condition has been studied. The alloys were melted, cast into ingots and hot rolled. The grain size of the rolled samples was 69, 45, 40, 30 and 35 μm. Tensile test specimens were machined from the hot rolled plate in the rolling direction. Strain-rate-change (SCR) tests at temperatures between 300 and 450 °C and strain rates between 1 × 10−4 and 1 × 10−1 s−1 were carried out to determine the strain rate sensitivity of the flow stress. Finally, elongation-to-failure tests were conducted at those temperatures and strain rates, where the alloys showed high strain rate sensitivity. A maximal elongation of 400% was obtained for the 3.89 wt.% Zn alloy. The results are explained in terms of solute drag creep as the principal deformation mechanism.  相似文献   

13.
Abstract

High strain rate superplasticity was obtained for powder Ti–10V–2Fe–3Al (Ti-1023) alloy prepared by powder sintering and isothermal forging technology. The selected powder was cold isostatic pressed, sintered and isothermal forged to prepare this powder alloy. Tensile testing was conducted at optimum superplastic temperaure of 1023 K with different initial strain rate, and the elongation to failure, the flow stress and the microstructure were analysed. The experiment results exhibited that the microstructure of this powder alloy is extraordinary uniform and fine, resulted in considerable enhancement of optimum initial strain rate increased from 3·3×10?4 s?1 of conventional cast and wrought Ti-1023 alloy to 3·3×10?3 s?1 of this powder alloy. The elongation to failure increased first and then decreased with initial strain rate from 3·3×10?4 to 3·3×10?2 s?1. The strain rate sensitivity m is about 0·46 near initial strain rate of 3·3×10?3 s?1, larger than conventional cast and wrought Ti-1023 alloy. Microstructure observations showed that dynamic recrystallisation and grain growth were present during superplastic deforming.  相似文献   

14.
Hot deformation characteristics of a Fe-base superalloy were studied at various temperatures from 1000–1200°C under strain rates from 0·001–1 s − 1 using hot compression tests. Processing maps for hot working are developed on the basis of the variations of efficiency of power dissipation with temperature and strain rate and interpreted by a dynamic materials model. Hot deformation equation was given to characterize the dependence of peak stress on deformation temperature and strain rate. Hot deformation apparent activation energy of the Fe–24Ni–11Cr–1Mo–3Ti superalloy was determined to be about 499 kJ/mol. The processing maps obtained in a strain range of 0·1–0·7 were essentially similar, indicating that strain has no significant influence on it. The processing maps exhibited a clear domain with a maximum of about 40–48% at about 1150°C and 0·001 s − 1.  相似文献   

15.
Effects of temperature and strain rate on the cohesive relation for an engineering epoxy adhesive are studied experimentally. Two parameters of the cohesive laws are given special attention: the fracture energy and the peak stress. Temperature experiments are performed in peel mode using the double cantilever beam specimen. The temperature varies from −40 to + 80°C. The temperature experiments show monotonically decreasing peak stress with increasing temperature from about 50 MPa at −40°C to about 10 MPa at + 80°C. The fracture energy is shown to be relatively insensitive to the variation in temperature. Strain rate experiments are performed in peel mode using the double cantilever beam specimen and in shear mode, using the end notch flexure specimen. The strain rates vary; for peel loading from about 10−4 to 10 s−1 and for shear loading from 10−3 to 1 s−1. In the peel mode, the fracture energy increases slightly with increasing strain rate; in shear mode, the fracture energy decreases. The peak stresses in the peel and shear mode both increase with increasing strain rate. In peel mode, only minor effects of plasticity are expected while in shear mode, the adhesive experiences large dissipation through plasticity. Rate dependent plasticity, may explain the differences in influence of strain rate on fracture energy between the peel mode and the shear mode.  相似文献   

16.
Portevin-Le Chatelier effect of LA41 magnesium alloys   总被引:1,自引:0,他引:1  
Uni-axial tensile deformation of LA41 magnesium alloy has been carried out and the Portevin-Le Chatelier (PLC) effect, also known as serrated flow or plastic instability, is observed. This kind of alloy exhibits negative strain rate sensitivity (SRS) at room temperature, that is, SRS is negative at the strain rate range from 3.33 × 10−4 to 6.66 × 10−3 s−1 at ambient temperature. Both ultimate stress (σb) and 0.2% proof stress (σ0.2) decrease when strain rate ( ) increases, whilst critical strain (ɛc) of serrated flow is found to rise with enhancing . A new explanation for this unusual phenomenon is presented. The model of dynamic strain aging (DSA) is established through diffusion of solute atoms to mobile dislocations, which are temporarily arrested at obstacles. Such interaction renders the movement of mobile dislocations more difficult so as to necessitate the required force to overcome the obstacles. Translated from Acta Metallurgica Sinica, 2006, 42(2): 191–194 [译自: 金属学报]  相似文献   

17.
X-ray diffraction patterns of chemically deposited lead sulphide thin films have been recorded and X-ray line profile analysis studies have been carried out. The lattice parameter, crystallite size, average internal stress and microstrain in the film are calculated and correlated with molarities of the solutions. Both size and strain are found to contribute towards the broadening of X-ray diffraction line. The values of the crystallite size are found to be within the range from 22–33 nm and the values of strain to be within the range from 1·0 × 10−3–2·5 × 10−3.  相似文献   

18.
High-density β-calcium orthophosphate (β-Ca3(PO4)2, also called β-tricalcium phosphate: β-TCP) ceramics with submicrometer-sized grains were fabricated using a pulse-current pressure firing route. The maximum relative density of the β-TCP compacts was 98.7% at 1050 °C and this was accompanied by a translucent appearance. The mean grain size of the β-TCP compacts increased slightly with temperature to reach 0.78 μm at 1000 °C. However, upon further increasing the firing temperature to 1050 °C the mean grain size increased significantly to 1.6 μm. The extent of plastic deformation during tensile testing was examined at temperatures between 900 and 1100 °C using a strain rate in the range 9.26 × 10−5 to 4.44 × 10−4 s−1. The maximum tensile strain achieved was 145% for a test temperature of 1000 °C and strain rate of 1.48 × 10−4 s−1 and this was attributed to the relatively high density and small grain size.  相似文献   

19.
Abstract

A split Hopkinson bar is used to investigate the effects of prestrain and strain rate on the dynamic mechanical behaviour of 304L stainless steel, and these results are correlated with microstructure and fracture characteristics. Annealed 304L stainless steel is prestrained to strains of 0·15, 0·3, and 0·5, then machined as cylindrical compression specimens. Dynamic mechanical tests are performed at strain rates ranging from 102 to 5 × 103 s-1 at room temperature, with true stains varying from 0·1 to 0·3. It was found that 304L stainless steel is sensitive to applied prestrain and strain rate, with flow stress increasing with increasing prestrain and strain rate. Work hardening rate, strain rate sensitivity, and activation volume depend strongly on the variation of prestrain, strain, and strain rate. At larger prestrain and higher strain rate, work hardening rate decreases rapidly owing to greater heat deformation enhancement of plastic flow instability at dynamic loading. Strain rate sensitivity increases with increasing prestrain and work hardening stress (σ-σy). However, activation volume exhibits the reverse tendency. Catastrophic fracture is found only for 0·5 prestrain, 0·3 strain, and strain rate of 4·8 × 103 s-1. Large prestrain increases the resistance to plastic flow but decreases fracture elongation. Optical microscopy and SEM fracture feature observations reveal adiabatic shear band formation is the dominant fracture mechanism. Adiabatic shear band void and crack formation is along the direction of maximum shear stress and induces specimen fracture.  相似文献   

20.
The tensile creep behavior of a N610™/LaPO4/Al2O3 composite was investigated at 1,100°C in laboratory air and in steam. The composite consists of a porous alumina matrix reinforced with Nextel 610 fibers woven in an eight-harness satin weave fabric and coated with monazite. The tensile stress-strain behavior was investigated and the tensile properties measured at 1,100°C. The addition of monazite coating resulted in ~33% improvement in ultimate tensile strength (UTS) at 1,100°C. Tensile creep behavior was examined for creep stresses in the 32–72 MPa range. Primary and secondary creep regimes were observed in all tests. Minimum creep rate was reached in all tests. In air, creep strains remained below 0.8% and creep strain rates approached 2 × 10−8 s−1. Creep run-out defined as 100 h at creep stress was achieved in all tests conducted in air. The presence of steam accelerated creep rates and significantly reduced creep lifetimes. In steam, creep strain reached 2.25%, and creep strain rate approached 2.6 × 10−6 s−1. In steam, creep run-out was not achieved. The retained strength and modulus of all specimens that achieved run-out were characterized. Comparison with results obtained for N610™/Al2O3 (control) specimens revealed that the use of the monazite coating resulted in considerable improvement in creep resistance at 1,100°C both in air and in steam. Composite microstructure, as well as damage and failure mechanisms were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号