首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
The emerging new fixed dose combination of metformin hydrocholride (HCl) as sustained release and glipizide as immediate release were formulated as a bilayer matrix tablet using hydroxy propyl methyl cellulose (HPMC) as the matrix-forming polymer, and the tablets were evaluated via in vitro studies. Three different grades of HPMC (HPMC K 4M, HPMC K 15M, and HPMC K 100M) were used. All tablet formulations yielded quality matrix preparations with satisfactory tableting properties. In vitro release studies were carried out at a phosphate buffer of pH 6.8 with 0.75% sodium lauryl sulphate w/v using the apparatus I (basket) as described in the . The release kinetics of metformin were evaluated using the regression coefficient analysis. There was no significant difference in drug release for different viscosity grade of HPMC with the same concentration. Tablet thus formulated provided sustained release of metformin HCl over a period of 8 hours and glipizide as immediate release.  相似文献   

2.
The goal of diabetes therapy today is to achieve and maintain as near normal glycemia as possible to prevent the long-term microvascular and macrovascular complications of an elevated blood glucose. A newly developed inlay osmotic pump tablet (IOPT) can deliver glipizide (GLZ) and metformin HCl (MET) gradually in controlled manner. The aim of present investigation was to prepare the IOPT that can deliver >75% of GLZ in 2?h, whereas MET released after 2?h and sustained up to 12?h. In the present work, HP-β-CD was used to modify the solubility of GLZ before incorporating in the osmotic system and MET was spray-dried with HPMC A15C to modify its release profile, flow property, and compressibility. Various parameters mainly G75% (75% GLZ release), tLMET (lag time of MET release from device), Q10 h (percent of MET released within 10?h), and RSQZERO (R2 of release data fitted to zero-order equation) were used to compare different formulations. The effects of different formulation variables, that is, osmagents, concentration of hydrophilic polymer, diameter of drug releasing orifice, and coating composition on the drug release profile were investigated. The release rate of GLZ could be effectively modified by the addition of sodium carbonate and sodium chloride, whereas the release rate of MET was adjusted by dual-coating system and by addition of hydrophilic polymer. The developed inlay osmotic system could be effective in the multidrug therapy of diabetes by delivering both drugs in a controlled manner.  相似文献   

3.
Patients with type 2 diabetes mellitus have a high risk of cardiovascular disease mainly caused by dyslipidemia. Metformin and atorvastatin are preferentially used to treat type 2 diabetes mellitus and dyslipidemia, respectively. The aim of this study was to develop a once-a-day fixed-dose combination tablet containing metformin and atorvastatin. For this purpose, we designed gastroretentive bilayer tablets consisting of 500?mg metformin in a sustained release layer and 10?mg atorvastatin in an immediate release layer. In addition, we modified the formulation to maintain a dual release pattern for the kinetically different layers for once-daily dosing. The gastroretentive bilayer tablet was developed using polyethylene oxide as a swellable polymer and ammonium methacrylate copolymer as a granule-coating polymer with minimal use of excipients. In vitro release patterns of metformin and atorvastatin from the developed formulation were similar to those of the reference drugs, Glucophage XR for metformin and Lipitor for atorvastatin, with satisfactory dissolution similarity factor (f2) values. The pharmacokinetic study showed the sustained and immediate absorptions of metformin and atorvastatin, respectively, in beagle dogs. The 90% confidence intervals of the ratios of ln values of AUCs of test formulation F3 and respective reference formulations of metformin and atorvastatin were 0.93–1.12 and 0.89–1.17, respectively, compared with their respective reference drugs. This formulation could contribute to improving the compliance and therapeutic outcome of patients with metabolic diseases.  相似文献   

4.
Abstract

Commercially available domperidone orodispersible tablets (ODT) are intended for immediate release of the drug, but none of them have been formulated for sustained action. The aim of the present research work was to develop and evaluate orodispersible sustained release tablet (ODT-SR) of domperidone, which has the convenience of ODT and benefits of controlled release product combined in one. The technology comprised of developing sustained release microspheres (MS) of domperidone, followed by direct compression of MS along with suitable excipients to yield ODT-SR which rapidly disperses within 30?seconds and yet the dispersed MS maintain their integrity to have a sustained drug release. The particle size of the MS was optimized to be less than 200?μm to avoid the grittiness in the mouth. The DSC thermograms of MS showed the absence of drug-polymer interaction within the microparticles, while SEM confirmed their spherical shape and porous nature. Angle of repose, compressibility and Hausner’s ratio of the blend for compression showed good flowability and high percent compressibility. The optimized ODT-SR showed disintegration time of 21?seconds and matrix controlled drug release for 9?h. In-vivo pharmacokinetic studies in Wistar rats showed that the ODT-SR had a prolonged MRT of 11.16?h as compared 3.86?h of conventional tablet. The developed technology is easily scalable and holds potential for commercial exploitation.  相似文献   

5.
Abstract

The combination of metformin hydrochloride (MTF) and glipizide (GLZ) is second-line medication for diabetes mellitus type 2 (DMT2). In the present study, elementary osmotic pump ( EOP) tablet is designed to deliver the combination of MTF and GLZ in a sustained and synchronized manner. By analyzing different variables of the formulation, sodium hydrogen carbonate is introduced as pH modifier to improve the release of GLZ, while ethyl cellulose acts as release retardant to reduce the burst release phase of MTF. A two-factor, three-level face-centered central composite design (FCCD) is applied to investigate the impact of different factors on drug release profile. Compared with conventional tablets, the EOP tablet demonstrates a controlled release behavior with relative bioavailability of 99.2% for MTF and 99.3% for GLZ. Data also shows EOP tablet is able to release MTF and GLZ in a synchronized and sustained manner both in vitro and in vivo.  相似文献   

6.
Objective: The aim of the present investigation was to evaluate the use of spray-dried O-carboxymethyl chitosan (OCMCS) as potential hydrophilic matrix excipient for sustained release of drug.

Methods: The polymer was synthesized from chitosan, then spray-dried and characterized. Tablets with different OCMCS concentrations (80, 50, 30, 5 and 2% w/w), containing diltiazem (DTZ) as model drug, were prepared for direct compression (DC) and after the wet granulation method (WG).

Results: The spray-dried OCMCS powder was spherical, with a smooth surface and an average size of 2.2?µm. The tablets prepared for WG disintegrated in time less than 30?min. The tablets obtained for DC presented high retention of the drug, with zero order or Higuchi release kinetic. There was a direct relationship between the OCMCS concentration and the release ratio, swelling degree and water uptake behavior. DC tablets containing 80% OCMCS presented behavior as an effective swelling-control system. The DC tablets with 5% OCMCS showed a similar release profile at formulations with 30% HPMC.

Conclusion: Spray-dried OCMCS showed great potential as hydrophilic matrices for drug-sustained release.  相似文献   

7.
Context: Orally disintegrating tablets (ODTs) with sustained release profiles are a new generation of ODTs called orally disintegrating/sustained release tablets (ODSRTs), which are convenient in use and able to slowly release drugs to maintain effective blood concentrations over a prolonged period of time. Ketoprofen, one of non-steroidal anti-inflammatory drugs, is an ideal model drug for ODSRTs.

Methods: We designed a simple two-step process to develop novel ketoprofen orally disintegrating/sustained release tablets (KODSRTs). Firstly, sustained release ketoprofen fine granules were developed by spray drying the aqueous dispersions composed of Eudragit RS-30D, Starch 1500 and PEG 6000. The optimal parameters of spray drying were 100°C for inlet air temperature and 1.5 mL/min for feed rate. Subsequently, the obtained granules were directly compressed into KODSRTs after mixing with lactose, mannitol and a superdisintegrant, crosslinked polyvinylpyrrolidone (PVPP). The characteristics of KODSRTs, especially their potential for extended drug release, were evaluated.

Results: Results of an in vitro release test demonstrated that KODSRTs could slowly release ketoprofen for 24 h after disintegrating within 30 s. Extended release properties of KODSRTs were decided by the ketoprofen sustained release fine granules in tablets. Besides, the disintegration time of KODSRTs depended on the percentage of PVPP in tablets. In vivo pharmacokinetic studies in beagles also showed that KODSRTs possessed a significantly extended release profile compared with ketoprofen normal capsules.

Conclusion: KODSRTs were successfully prepared using a simple two-step process: spray drying and direct compression.  相似文献   

8.
A system that can deliver multi-drugs at a prolonged rate is very important to the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Two controlled-release systems, which exhibited similar release profiles of metformin and glipizide, i.e., elementary osmotic pump tablets (EOP) and bilayer hydrophilic matrix tablet (BT), were designed. The effects of pH and hydrodynamic conditions on drug release from two formulations were investigated. It was found that both drug releases from EOP were not sensitive to dissolution media pH and hydrodynamics change, while the release of glipizide from BT was influenced by the stirring rate. Moreover, in vivo evaluation was performed, relative to the equivalent dose of conventional metformin tablet and glipizide tablet, by a three-crossover study in six Beagle dogs. Cumulative percent input in vivo was compared to in vitro release profiles. The linear correlations of metformin and glipizide between fraction absorbed in vivo and fraction dissolved in vitro were established for EOP—a true zero-order release formula, whereas only nonlinear correlations were obtained for BT. In conclusion, drug release from EOP was both independent of in vitro and in vivo conditions, where the best sustained release effect was achieved, whereas the in vitro dissolution test employed for BT needed to be further optimized to be biorelevant.  相似文献   

9.
Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. A sustained-release (SR) tablet prepared by direct compression of wet-extruded and spheronized core pellets with HPMC excipients and exhibited a zero-order sustained release (SR) profile. The 23 full factorial design was utilized to search an optimal SR tablet formulation. This optimal formulation was followed zero-order mechanism and had specific release rate at different time intervals (released % of 1, 6, and 12 hr were 15.84, 58.56, and 93.10%). The results of moisture absorption by Karl Fischer meter showed the optimum SR tablet could improve the hygroscopic defect of the pure drug (PB). In the in vivo study, the results of the bioavailability data showed the Tmax was prolonged (from 0.65 ± 0.082 hr to 4.83 ± 1.60 hr) and AUC0-t (from 734.88 ± 230.68 ng/ml.hr to 1153.34 ± 488.08 ng/ml.hr) and was increased respectively for optimum PB-SR tablets when compared with commercial immediate release (IR) tablets. Furthermore, the percentages of in vitro dissolution and in vivo absorption in the rabbits have good correlation. We believe that PB-SR tablets designed in our study would improve defects of PB, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in war or terrorist attacks in the future.  相似文献   

10.
Aim: The objective of our present study was to prepare solid self-microemulsion in the form of tablet of a poorly water soluble drug, Atorvastatin calcium (ATNC) to increase the solubility, dissolution rate, and minimize the hazards experienced from liquid emulsions.

Materials and methods: Self-microemulsifying ATNC tablet was formulated mainly by using self-emulsifying base, solidifying agent silicon dioxide and sodium starch glycolate as tablet disintegrant. Self-emulsifying base containing Transcutol P, Gelucire 44/14, and Lutrol F68 with their ratios in the formulation, were best selected by solubility study and ternary phase diagram in different vehicles. Particle size of microemulsion from tablet, physical parameters of the tablet and drug content has been checked. In vitro drug release rate has been carried out in phosphate buffer medium (pH 6.8). Physicochemical characterization of the drug in the optimized formulation has been performed to check drug-excipient incompatibility, if any.

Results: Average particle diameter of the emulsions formed from the tablet was found to be below 100?nm in case of formulation F4 and F5, which indicated microemulsions has been formed. In vitro drug release from the formulations F3, F4, and F5 was found to be >90%, indicated the enhancement of solubility of ATNC compared to parent drug. Differential thermal analysis (DTA), Powder X-ray Diffraction (X-RD) and Fourier transform infra red (FTIR) study proved the identity of the drug in the optimized formulation.

Conclusion: The tablet form of self-microemulsifying (SME) drug delivery is good for solubility enhancement.  相似文献   

11.
Objectives: Use of Surelease as a granulation liquid in preparation of granules and matrices of theophylline and ethylcellulose was evaluated.

Materials and methods: Physical mixtures (at 1:1 or 1:1.5 drug:polymer) were granulated using water, Surelease or diluted Surelease as granulating liquid. The granule characteristics (shape, size, flow rate, mechanical properties, friability and release profile) were studied. Afterwards, matrices were manufactured and their crushing strengths, friability and release profiles were determined.

Results: Granulation produced agglomerated particles with better flowability than physical mixtures. Change of granulation liquid from water to Surelease or diluted Surelease led to the marginal increase in size of granules at 1:1 drug:polymer, however, the flow rate and Carr’s index were considerably improved. The hardness, elastic modulus, friability and rate of drug release were not affected by granulation liquid. Increase in polymer content resulted in reduction in size of granules, flow rate, elastic modulus and rate of drug release. However hardness of the granules was unaffected. Granulation process and granulation liquid did not affect the hardness, and dissolution rate of matrices at 1:1 drug:polymer, while the use of Surelease or diluted Surelease as a granulating liquid, increased the hardness and decreased drug release rate at 1:1.5 drug:polymer. Matrices prepared from Surelease or diluted Surelease showed similar characteristics.

Conclusions: Surelease is a suitable granulating liquid for preparation of ethylcellulose matrices especially when high amount of polymer is used and could not only improve the flow and compatibility of the granules, but also help in reducing the rate of drug release.  相似文献   


12.
Objective: In this study, pharmacokinetics (PKs) and bioavailability of newly developed extended release (ER) Itopride HCl 150?mg encapsulated ER pellets (test) and 150?mg Ganaton ER once-daily (OD) tablets (reference) were compared and evaluated under fasted and fed conditions.

Methods: Twelve healthy human subjects were enrolled in a single dose, randomized; two treatments, two sequences, four period crossover study. A modified and validated liquid chromatographic method was used for the estimation of Itopride HCl in plasma samples. The data were analyzed through non-compartmental model using PK software Phoenix Winnonlin version 7. The outcome was measured on logarithmically transformed data, where p?>?0.05 was considered as non-significant with 90% CI limit of 0.8–1.25.

Results: The Cmax, AUC0–t, and AUC0–∞ values of Itopride HCl 150?mg ER pellets versus that of OD 150?mg tablets, in fed and fasted states, were within the limits specified by FDA to establish bioequivalence. The relative bioavailability of Itopride HCl 150?mg ER pellets were 1.019 (fed) and 1.081(fasted). The 90% CIs of AUC values for Itopride HCl 150?mg ER pellets and OD 150?mg tablets in fed versus fast were significantly greater and were not within 80–125% limit.

Conclusion: The test and reference formulations had similar pharmacokinetic parameters in each condition studied. However, an increase in the amount of drug was observed in the fed state.  相似文献   


13.
The aim of this study was to formulate and optimize gliclazide-loaded Eudragit nanoparticles (Eudragit L100 and Eudragit RS) as a sustained release carrier with enhanced efficacy. Eudragit L 100 nanoparticles (ELNP) were prepared by controlled precipitation method whereas Eudragit RSPO nanoparticles (ERSNP) were prepared by solvent evaporation method. The influence of various formulation factors (stirring speed, drug:polymer ratio, homogenization, and addition of surfactants) on particle size, drug loading, and encapsulation efficiency were investigated. The developed Eudragit nanoparticles (L100 and RS) showed high drug loading and encapsulation efficiencies with nanosize. Mean particle size altered by changing the drug:polymer ratio and stirring speed. Addition of surfactants showed a promise to increase drug loading, encapsulation efficiency, and decreased particle size of ELNP as well as ERSNP. Dissolution study revealed sustained release of gliclazide from Eudragit L100 as well as Eudragit RSPO NP. SEM study revealed spherical morphology of the developed Eudragit (L100 and RS) NP. FT-IR and DSC studies showed no interaction of gliclazide with polymers. Stability studies revealed that the gliclazide-loaded nanoparticles were stable at the end of 6 months. Developed Eudragit NPs revealed a decreased tmin (ELNP), and enhanced bioavailability and sustained activity (ELNP and ERSNP) and hence superior activity as compared to plain gliclazide in streptozotocin induced diabetic rat model and glucose-loaded diabetic rat model. The developed Eudragit (L100 and RSPO) NP could reduce dose frequency, decrease side effects, and improve patient compliance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号