首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteolysis of the invariant chain (li) leads to the generation of abundant MHC class II-associated invariant chain peptides (CLIP), which bind in the MHC class II binding groove via supermotifs in a manner similar to that of antigenic peptides. We have engineered an li vector with the capacity to express any antigenic peptide of interest instead of CLIP, for T cell stimulation. When peripheral blood mononuclear cells (PBMC) were pulsed with li hybrids encoding T cell epitopes of tetanus toxin or acetylcholine receptor, stimulation of T cells was dramatically enhanced compared to stimulation after priming with either the native or recombinant proteins. Site-specific insertion of antigenic sequences into the CLIP region promoted enhanced antigenicity of li hybrids which were shown to be processed intracellularly in a chloroquine-sensitive compartment. Naturally processed T helper epitopes were visualized directly on the surface of PBMC and identified as analogs of CLIP associated with MHC class II molecules. This novel li vector provides a flexible and efficient system for the delivery of defined peptide epitopes to T cells which might be useful in the development of specific vaccines and in the study of intracellular processing.  相似文献   

2.
Major histocompatibility complex (MHC) class II molecules bind to numerous peptides and display these on the cell surface for T cell recognition. In a given immune response, receptors on T cells recognize antigenic peptides that are a minor population of MHC class II-bound peptides. To control which peptides are presented to T cells, it may be desirable to use recombinant MHC molecules with covalently bound antigenic peptides. To study T cell responses to such homogeneous peptide-MHC complexes, we engineered an HLA-DR1 cDNA coding for influenza hemagglutinin, influenza matrix, or HIV p24 gag peptides covalently attached via a peptide spacer to the N terminus of the DR1 beta chain. Co-transfection with DR alpha cDNA into mouse L cells resulted in surface expression of HLA-DR1 molecules that reacted with monoclonal antibodies (mAb) specific for correctly folded HLA-DR epitopes. This suggested that the spacer and peptide did not alter expression or folding of the molecule. We then engineered an additional peptide spacer between the C terminus of a truncated beta chain (without transmembrane or cytoplasmic domains) and the N terminus of full-length DR alpha chain. Transfection of this cDNA into mouse L cells resulted in surface expression of the entire covalently linked heterotrimer of peptide, beta chain, and alpha chain with the expected molecular mass of approximately 66 kDa. These single-chain HLA-DR1 molecules reacted with mAb specific for correctly folded HLA-DR epitopes, and identified one mAb with [MHC + peptide] specificity. Affinity-purified soluble secreted single-chain molecules with truncated alpha chain moved in electrophoresis as compact class II MHC dimers. Cell surface two-chain or single-chain HLA-DR1 molecules with a covalent HA peptide stimulated HLA-DR1-restricted HA-specific T cells. They were immunogenic in vitro for peripheral blood mononuclear cells. The two-chain and single-chain HLA-DR1 molecules with covalent HA peptide had reduced binding for the bacterial superantigens staphylococcal enterotoxin A and B and almost no binding for toxic shock syndrome toxin-1. The unique properties of these engineered HLA-DR1 molecules may facilitate our understanding of the complex nature of antigen recognition and aid in the development of novel vaccines with reduced superantigen binding.  相似文献   

3.
In order to facilitate the identification of T-cell epitopes as useful components of synthetic vaccines, we investigated the role of MHC molecules as the restriction element for the recognition of epitopes by the alpha beta receptor of T cells. MHC molecules are able to present thousands of different peptides to T cells, with all the peptides presented by one distinct type of MHC sharing common structural features. Our group analyzed these common characteristics concerning peptide length (only MHC I ligands) and anchor positions (MHC I and II ligands) occupied by a small set of closely related amino acids. Until now, for more than fifty MHC proteins allele-specific "peptide motifs" have been defined. The exact knowledge of MHC I peptide motifs allows for a prediction of CTL epitopes, and this kind of prediction has been successful in many cases over the last three years.  相似文献   

4.
Stimulation of CD4(+) helper T lymphocytes by antigen-presenting cells requires the degradation of exogenous antigens into antigenic peptides which associate with major histocompatibility complex (MHC) class II molecules in endosomal or lysosomal compartments. B lymphocytes mediate efficient antigen presentation first by capturing soluble antigens through clonally distributed antigen receptors (BCRs), composed of membrane immunoglobulin (Ig) associated with Ig-alpha/Ig-beta heterodimers which, second, target antigens to MHC class II-containing compartments. We report that antigen internalization and antigen targeting through the BCR or its Ig-alpha-associated subunit to newly synthesized class II lead to the presentation of a large spectrum of T cell epitopes, including some cryptic T cell epitopes. To further characterize the intracellular mechanisms of BCR-mediated antigen presentation, we used two complementary experimental approaches: mutational analysis of the Ig-alpha cytoplasmic tail, and overexpression in B cells of dominant negative syk mutants. Thus, we found that the syk tyrosine kinase, an effector of the BCR signal transduction pathway, is involved in the presentation of peptide- MHC class II complexes through antigen targeting by BCR subunits.  相似文献   

5.
The ability to directly load cell surface major histocompatibility complex (MHC) class I molecules with peptides provides a potentially powerful approach toward the development of vaccines to generate cell-mediated immunity. We demonstrate that exogenous beta2-microglobulin (beta2m) stabilizes human cell surface MHC I molecules and facilitates their loading with exogenous peptides. Additionally, using three-dimensional crystal structures and known interaction sites between MHC I heavy chains and beta2m, we engineered variants of human beta2m (hbeta2m) with a single serine substitution at residue 55. This alteration was predicted to promote hydrophobic interactions at the MHC I heavy chain/beta2m interface and displace an ordered water molecule. Compared with hbeta2m, the serine to valine substitution at residue 55 had improved ability to bind to cell surface HLA-A1, HLA-A2, and HLA-A3 molecules, facilitate exogenous peptide loading, and promote recognition by peptide-specific T cells. The inclusion of hbeta2m or higher affinity variants when pulsing cells with MHC-restricted peptides increases the efficiency of peptide loading 50-80-fold. Therefore, the inclusion of hbeta2m in peptide-based vaccines may increase cell surface antigen densities above thresholds that allow recognition of peptide antigens by the immune system, particularly for cryptic, subdominant, or marginally antigenic peptides.  相似文献   

6.
Type 1 diabetes (IDDM) is a T cell mediated autoimmune disease which in part is determined genetically by its association with major histocompatibility complex (MHC) class II alleles. The major role of MHC molecules is the regulation of immune responses through the presentation of peptide epitopes of processed protein antigens to the immune system. Recently it has been demonstrated that MHC molecules associated with autoimmune diseases preferentially present peptides of other endogenous MHC proteins, that often mimic autoantigen-derived peptides. Hence, these MHC-derived peptides might represent potential targets for autoreactive T cells. It has consistently been shown that humoral autoimmunity to insulin predominantly occurs in early childhood. The cellular immune response to insulin is relatively low in the peripheral blood of patients with IDDM. Studies in NOD mice however have shown, that lymphocytes isolated from pancreatic islet infiltrates display a high reactivity to insulin and in particular to an insulin peptide B 9-23. Furthermore we have evidence that cellular autoimmunity to insulin is higher in young pre-diabetic individuals, whereas cellular reactivity to other autoantigens is equally distributed in younger and older subjects. This implicates that insulin, in human childhood IDDM and animal autoimmune diabetes, acts as an important early antigen which may target the autoimmune response to pancreatic beta cells. Moreover, we observed that in the vast majority of newly diagnosed diabetic patients or individuals at risk for IDDM, T cell reactivity to various autoantigens occurs simultaneously. In contrast, cellular reactivity to a single autoantigen is found with equal frequency in (pre)-type 1 diabetic individuals as well as in control subjects. Therefore the autoimmune response in the inductive phase of IDDM may be targeted to pancreatic islets by the cellular and humoral reactivity to one beta-cell specific autoantigen, but spreading to a set of different antigens may be a prerequisite for progression to destructive insulitis and clinical disease. Due to mimic epitopes shared by autoantigen(s), autologous MHC molecules and environmental antigens autoimmunity may spread, intramolecularly and intermolecularly and amplify upon repeated reexposure to mimic epitopes of environmental triggers.  相似文献   

7.
T cell receptors on CD4(+) lymphocytes recognize antigen-derived peptides presented by major histocompatibility complex (MHC) class II molecules. A very limited set of peptides among those that may potentially bind MHC class II is actually presented to T lymphocytes. We here examine the role of two receptors mediating antigen internalization by antigen presenting cells, type IIb2 and type III receptors for IgG (FcgammaRIIb2 and FcgammaRIII, respectively), in the selection of peptides for presentation to T lymphocytes. B lymphoma cells expressing recombinant FcgammaRIIb2 or FcgammaRIII were used to assess the presentation of several epitopes from two different antigens. 4 out of the 11 epitopes tested were efficiently presented after antigen internalization through FcgammaRIIb2 and FcgammaRIII. In contrast, the 7 other epitopes were efficiently presented only when antigens were internalized through FcgammaRIII, but not through FcgammaRIIb2. The capacity to present these latter epitopes was transferred to a tail-less FcgammaRIIb2 by addition of the FcgammaRIII-associated gamma chain cytoplasmic tail. Mutation of a single leucine residue at position 35 of the gamma chain cytoplasmic tail resulted in the selective loss of presentation of these epitopes. Therefore, the nature of the receptor that mediates internalization determines the selection of epitopes presented to T lymphocytes within single protein antigens.  相似文献   

8.
The elucidation of the enzymatic processing mechanism associated with the formation of antigenic peptide fragments that combine with MHC class II molecules is fundamental to our understanding of the immune system. We have investigated a structurally well defined protein, recombinant human growth hormone (rhGH), as an antigen, and present data supporting the hypothesis that the enzyme cathepsin B can produce peptide fragments bearing T cell epitopes associated with lymphocyte proliferative response to hGH in Balb/c (H-2dhaplotype) mice. Minimal T cell epitopes are not generated; rather the cathepsin cleavage sites flank the three antigenic peptide regions, amino acid residues 31-41, 81-100, and 166-181.  相似文献   

9.
Eight to eleven amino acid residues are the sizes of predominant peptides found to be associated with MHC class I molecules. Proteasomes have been implicated in antigen processing and generation of such peptides. Advanced methodologies in peptide elution together with sequence determination have led to the characterisation of MHC class I binding motifs. More recently, screening of random peptide phage display libraries and synthetic combinatorial peptide libraries have also been successfully used. This has led to the development and use of predictive algorithms to screen antigens for potential CTL epitopes. Not all predicted epitopes will be generated in vivo and the emerging picture suggests differential presentation of predicted CTL epitopes ranging from cryptic to immunodominant. The scope of this review is to discuss antigen processing by proteasomes, and to put forward a hypothesis that the molecular basis of immunogenicity can be a function of proteasomal processing. This may explain how pathogens and tumours are able to escape immunosurveillance by altering sequences required by proteasomes for epitope generation.  相似文献   

10.
T cells initiate many immune responses through the interaction of their T-cell antigen receptors (TCR) with antigenic peptides bound to major histocompatibility complex (MHC) molecules. This interaction sends a biochemical signal into the T cell by a mechanism that is not clearly understood. We have used quasielastic light scattering (QELS) to show that, in the presence of MHC molecules bound to a full agonist peptide, TCR/peptide-MHC complexes oligomerize in solution to form supramolecular structures at concentrations near the dissociation constant of the binding reaction. The size of the oligomers is concentration dependent and is calculated to contain two to six ternary complexes for the concentrations tested here. This effect is specific as neither molecule forms oligomers by itself, nor were oligomers observed unless the correct peptide was bound to the MHC. These results provide direct evidence for models of T-cell signalling based on the specific assembly of multiple TCR/peptide-MHC complexes in which the degree of assembly determines the extent and qualitative nature of the transduced signal. They may also explain how T cells maintain sensitivity to antigens present in only low abundance on the antigen-presenting cell.  相似文献   

11.
Major histocompatibility complex (MHC) class II molecules can present peptides derived from two different sources. The predominant source of peptide in uninfected antigen presenting cells (APCs) is from self-proteins that are synthesized within the cell and traffic through the MHC class II compartment. The other source of antigen is endocytosed proteins, which includes both self- and foreign proteins. Foreign protein antigens generate adaptive immune responses, whereas self-peptides stabilize the MHC class II heterodimer on the cell surface, allowing positive and negative selection of thymocytes. Therefore, self-antigens play an important normal role in shaping the T cell receptor repertoire as well as a pathological role in autoimmunity. To determine whether processing and presentation of self-antigens by MHC class II molecules differs depending on whether the antigen is supplied through synthesis within the cell or by endocytosis, we used a T cell clone against an Ealpha peptide presented by I-Ab to show that processing through these two routes can differ. We also show that mice can be tolerant to the epitope formed through the endogenous route, but responsive to the epitope that can be formed through endocytosis. This suggests that negative selection occurs primarily against antigens that are synthesized within the APC, and that endocytosed self-antigens could serve as autoantigens. Finally, we also demonstrate that lipopolysaccharide-activated B cells are defective for uptake, processing, and presentation of this self-antigen, and that this correlates with the increased expression of the costimulatory molecules B7.1 and B7.2. This may provide a model for studying the onset of an autoimmune response.  相似文献   

12.
The response exhibited by the immune system to viral and other foreign antigens consists of antibody-mediated and T cell-mediated immunity. Structural and molecular biological studies have shown that the antibody response is tailored to provide exquisite specificity by generating binding pockets that are complementary in shape as well as in charge to the antigen. On the other hand, the cellular response uses T-cell receptors (TCRs) and the major histocompatibility complex (MHC) antigens. Structural information on the TCRs is not yet available, but the crystal structures of several MHC class I molecules have shown how one MHC molecule can bind many different peptide sequences that share only the common anchor residue positions that determine allele specificity. MHC class I interactions with the peptide backbone at the N and C termini explain the high specificity of the binding groove for peptide ligands and suggest a universal mode of recognition for peptides to MHC class I molecules. Peptide-MHC class II interactions are less well understood, although recent structural work has shown important differences in the binding clefts of MHC class I and II that lead to longer peptides being bound to class II molecules. Detailed analysis at the molecular level has indicated that conformational changes in both antibodies and MHC molecules occur upon antigen binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Cytotoxic T Cells (CTLs) can exhibit considerable antitumor activity. Thus far, the characterized tumor peptide antigens recognized by CTLs are all presented by classical MHC class Ia molecules [human lymphocyte antigen A (HLA-A), HLA-B, and HLA-C in humans and H-2K, H-2D, and H-2L in mice]. Here we show that CTLs recognized peptides presented by nonclassical MHC class Ib molecule Qa-1b expressed by tumor cells. These CTLs conferred in vivo protection by delaying the growth of Qa-1b-expressing B78H1 melanoma cells pulsed with Qa-1b-binding peptides Cw4L or B35L and injected s.c. in C57BL/6 mice. A hierarchy of the peptides was found with regard to their ability to trigger CTLs; Cw4L stimulated a strong CTL response. The closely related and cross-reactive peptide B35L induced a weaker CTL response but was still efficient in sensitizing the target cells. Finally, Qa-1b-expressing melanoma cells without exogenous peptides were not immunogenic but possibly expressed endogenous cross-reactive antigenic peptides. The data are compatible with earlier findings that CTL activation requires relatively strong peptide antigens, whereas subsequent effector functions are also mediated by weak peptide analogues. In conclusion, CTLs mediated tumor immunity through the recognition of peptides presented by nonclassical MHC class Ib molecules. The identification of similar CTLs in humans may facilitate the vaccination of cancer patients because MHC class Ib/peptide complexes are much less polymorphic than MHC class Ia/peptide complexes.  相似文献   

14.
Intracellular antigens are continually presented to cytotoxic T lymphocytes by major histocompatibility complex (MHC) class I molecules, which consist of a polymorphic 43 kDa heavy chain and a 12 kDa soluble subunit beta 2-microglobulin (beta 2m), and which bind an 8-10 amino-acid antigenic peptide. The assembly of this trimolecular complex takes place in the lumen of the endoplasmic reticulum (ER) and almost certainly requires cofactors. Most MHC class I molecules in the ER that have not yet acquired peptide are simultaneously bound to the transporter associated with antigen processing (TAP), to the 48 kDa glycoprotein tapasin and to the lectin-like chaperone calreticulin, in a multicomponent 'loading complex'. Previous studies have shown that a mutant MHC class I molecule T134K (in which Thr134 was changed to Lys) fails to bind to TAP. Here, we show that this point mutation also disrupted, directly or indirectly, the interaction between MHC class I molecules and calreticulin. T134K molecules did not present viral antigens to T cells even though they bound peptide and beta 2m normally in vitro. They exited the ER rapidly as 'empty' MHC class I complexes, unlike empty wild-type molecules which are retained in the ER and degraded. We show here that, paradoxically, the rapid exit of empty T134K molecules from the ER was dependent on a TAP-derived supply of peptides. This implies that MHC class I assembly is a two-stage process: initial binding of suboptimal peptides is followed by peptide optimisation that depends on temporary ER retention.  相似文献   

15.
T cell interaction with antigenic peptides leads to signal transduction and activation events in the effector cells. Recent studies of T cell responses to subtle variants of antigenic peptides can lead to alterations in the activation state of T cells. A variety of physiological roles for altered peptide ligands have recently been postulated, and their potential therapeutic applications have generated considerable interest. This review summarizes progress made in understanding the T cell signal transduction pathways and the nature of T cell responses to altered peptide ligands. Our recent observation of a self peptide as a partial agonist for a cytotoxic T cell clone directed to a foreign antigen suggests that naturally occurring altered peptide ligands may be important in regulating T cell mediated immune response.  相似文献   

16.
T cell recognition of antigen requires that a complex form between peptides derived from the protein antigen and cell surface glycoproteins encoded by genes within the major histocompatibility complex (MHC). MHC class II molecules present both extracellular (exogenous) and internally synthesized (endogenous) antigens to the CD4 T cells subset of lymphocytes. The mechanisms of endogenous antigen presentation are the subject of this review. Isolation and amino acid sequencing of peptides bound to the class II molecule indicate that a very high proportion (70-90%) of the total peptides presented by the class II molecule are in fact derived from the pool of proteins that are synthetized within the antigen-presenting cell (APC). This type of sequence information as well as the study of model antigens has indicated that proteins expressed in a diversity of intracellular sites, including the cell surface, endoplasmic reticulum and cytosol can gain access to the class II molecule, albeit with different efficiencies. The main questions that remain to be answered are the intracellular trafficking patterns that allow colocalization of internally synthesized antigens with the class II molecule, the site(s) within the cell where peptide:class II molecule complex formation can take place and whether presentation of 'foreign' as well as 'self' antigens takes place by mechanisms that vary from one cell type to another or that vary with the metabolic state of the APC. If such variability exists, is would imply that the array of peptides displayed by class II molecules at the cell surface has similar variability, a possibility that would impact on self tolerance and autoimmunity.  相似文献   

17.
A major challenge for using native and modified T cell epitopes to induce or suppress immunity relates to achieving efficient uptake and processing by antigen-presenting cells (APC) in vivo. IgG Fc receptors, which are expressed constitutively by professional APC including monocytes and dendritic cells, have long been known to mediate antigen uptake in a manner leading to efficient T cell activation. We have previously demonstrated enhanced presentation of antigenic and antagonistic peptides by targeting them to the type I Fc receptor for IgG (Fc gamma RI, CD64) on human monocytes. In the present report we review the literature suggesting that CD64-targeted antigens are likely to be effective in vivo, and present data demonstrating enhanced immunogenicity in CD64 transgenic mice of a fusion protein that combines the specificities of HIV gp120 and the humanized anti-CD64 monoclonal antibody H22. Overall, these studies suggest that targeting antigens to CD64 represents an effective approach to enhancing the effectiveness of vaccines in vivo.  相似文献   

18.
In recent years, a growing interest in the study of peptide antigenicity in relation to the role of flanking sequences and protein topology in processing, presentation, and recognition has been observed. However, the information available on the antigenicity of recombinant fusion proteins and their effect on the selection of antigen receptor repertoires is limited. To analyze the role of molecular topology of T epitopes in a system relevant to human pathology, we have used the bacterially expressed Schistosoma japonicum glutathione S transferase (GST) to construct recombinant antigens containing HIV-1 derived T cell determinants, and human T cell clones specific for these determinants. We found that antigenicity of a given GST-peptide combination was not the same when T cells and antigen presenting cells from different individuals were tested. Our results show that differences in processing and presentation of chimeric proteins are not dictated by the use of diverse restriction elements. We also found that the context in which an antigenic peptide is delivered affects the recruited repertoire as defined according to T cell receptor V beta usage and fine specificities of selected T cells.  相似文献   

19.
In studies of T cell responses to synthetic peptides we have observed agonist and antagonist activities associated with contaminants identified within the parent synthesis. The synthesis of two candidate analogues implied by a peptide contaminant formed during the synthesis of La 51-58 (IMIKFNRL) has been carried out. The peptide contaminant was 17-18 Da smaller than the parent peptide consistent with a modified asparagine residue at position 6 and so we synthesised both an aspartimide and a nitrile analogue, representing cyclisation or dehydration of the asparagine residue. The candidate aspartimide and nitrile analogues both bound empty MHC class I molecules to form allo determinants recognised by monoclonal antibodies. These results demonstrate that altered synthetic peptides can bind class I MHC molecules and prompt caution in the use of synthetic peptides as a source of immunising antigen.  相似文献   

20.
We examine here how the beta chain of the class II MHC molecule I-Ag7 influences T cell recognition. Three sets of T cell clones were identified. The first set recognizes peptides bound to I-Ag7, I-Ad and I-Ag7 mutant in which the allele-specific residues His and Ser at position 56 and 57 were changed to the Pro at residue 56 and to non-polymorphic Asp at residue 57. The second set responds to the antigen presented only by I-Ag7 and does not recognize the peptides bound to the other class II molecules. The third set is also specific for I-Ag7 as a result of the poor binding of the peptide to I-Ad and the mutant I-Ag7. These results indicate that positions 56 and 57 of the I-Ag7 class II MHC beta chain play a role in both T cell recognition of the MHC-peptide complex and peptide binding to MHC. These two different functions may be involved in I-Ag7-restricted beta cell antigen recognition by diabetogenic T cell clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号