首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By using two different reaction pathways, we generated enzymatically three sialylated and site-specifically alpha 1-3-fucosylated polylactosamines. Two of these are isomeric hexasaccharides Neu5Ac(alpha 2-3)Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)] GlcNAc and Neu5Ac(alpha 2-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)Gal(beta 1-4) GlcNAc, containing epitopes that correspond to VIM-2 and sialyl Lewis (x), respectively. The third one, nonasaccharide Neu5Ac(alpha 2-3)Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)] GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc, is a sialylated and internally difucosylated derivative of a trimeric N-acetyllactosamine. All three oligosaccharides have one fucose-free N-acetyllactosaminyl unit and can be used as acceptors for recombinant alpha 1-3-fucosyltransferases in determining the biosynthesis pathways leading to polyfucosylated selectin ligands.  相似文献   

2.
The assembly of complex structures bearing the H determinant was examined by characterizing the specificities of a cloned blood group H gene-specified alpha 1,2-L-fucosyltransferase (FT) toward a variety of sulfated, sialylated, or fucosylated Gal beta 1,3/4GlcNAc beta- or Gal beta 1,3GalNAc alpha-based acceptor structures. (a) As compared to the basic type 2, Gal beta 1,4GlcNAc beta-(K(m) = 1.67 mM), the basic type 1 was 137% active (K(m) = 0.83 mM). (b) On C-6 sulfation of Gal, type 1 became 142.1% active and type 2 became 223.0% active (K(m) = 0.45 mM). (c) On C-6 sulfation of GlcNAc, type 2 showed 33.7% activity. (d) On C-3 or C-4 fucosylation of GlcNAc, both types 1 and 2 lost activity. (e) Type 1 showed 70.8% and 5.8% activity, respectively, on C-6 and C-4 O-methylation of GlcNAc. (f) Type 1 retained 18.8% activity on alpha 2,6-sialylation of GlcNAc. (g) Terminal type 1 or 2 of extended chain had lower activity. (h) With Gal in place of GlcNAc in type 1, the activity became 43.2%. (i) Compounds with terminal alpha 1,3-linked Gal were inactive. (j) Gal beta 1,3GalNAc alpha- (the T-hapten) was approximately 0.4-fold as active as Gal beta 1,4GlcNAc beta-. (k) C-6 sulfation of Gal on the T-hapten did not affect the acceptor activity. (l) C-6 sulfation of GalNAc decreased the activity to 70%, whereas on C-6 sulfation of both Gal and GalNAc the T-hapten lost the acceptor ability. (m) C-6 sialylation of GalNAc also led to inactivity. (n) beta 1,6 branching from GalNAc of the T-hapten by a GlcNAc residue or by units such as Gal beta 1, 4GlcNAc-, Gal beta 1,4(Fuc alpha 1,3)GlcNAc-, or 3-sulfoGal beta 1,4GlcNAc- resulted in 111.9%, 282.8%, 48.3%, and 75.3% activities, respectively. (o) The enhancement of enzyme affinity by a sulfo group on C-6 of Gal was demonstrated by an increase (approximately 5-fold) in the K(m) for Gal beta 1,4GlcNAc beta 1,6(Gal beta 1,3)GalNAc alpha-O-Bn in presence of 6-sulfoGal beta 1,- 4GlcNAc beta-O-Me (3.0 mM). (p) Among the two sites in Gal beta 1, 4GlcNAc beta 1,6(Gal beta 1,3) GalNAc alpha-O-Bn, the enzyme had a higher affinity ( > 3-fold) for the Gal linked to GlcNAc. (q) With respect to Gal beta 1,- 3GlcNAc beta-O-Bn (3.0 mM), fetuin triantennary asialo glycopeptide (2.4 mM), bovine IgG diantennary glycopeptide (2.8 mM), asialo Cowper's gland mucin (0.06 mM), and the acrylamide copolymers (0.125 mM each) containing Gal beta 1,3GlcNAc beta-, Gal beta 1,3(6-sulfo)GlcNAc beta-, Gal beta 1,3GalNAc alpha-, Gal beta 1,3Gal beta-, or Gal alpha 1,3Gal beta- units were 153.6%, 43.0%, 6.2%, 52.5%, 94.9%, 14.7%, 23.6%, and 15.6% active, respectively. (r) Fucosylation by alpha 1,2-L-FT of the galactosyl residue which occurs on the antennary structure of the bovine IgG glycopeptide was adversely affected by the presence of an alpha 1,6-L-fucosyl residue located on the distant glucosaminyl residue that is directly attached to the asparagine of the protein backbone. This became evident from the 4-fold activity of alpha 1,2-L-FT toward bovine IgG glycopeptide after approximately 5% removal of alpha 1,6-linked Fuo.  相似文献   

3.
The structures of the N-linked sugar chains in the PAS-6 glycoprotein (PAS-6) from the bovine milk fat globule membrane were determined. The sugar chains were liberated from PAS-6 by hydrazinolysis, and the pyridylaminated sugar chains were separated into a neutral (6N) and two acidic chains (6M and 6D), the acidic sugar chains then being converted to neutral sugar chains (6MN and 6DN). 6N was separated into two neutral fractions (6N13 and 6N5.5), while 6MN and 6DN each gave a single fraction (6MN13 and 6DN13). The structure of 6N5.5, which was the major sugar chain in PAS-6, is proposed to be Man alpha1 --> 6 (Man alpha1 --> 3) Man beta1 --> 4GlcNAc beta1 --> 4GlcNAc-PA; 6N13, 6MN13 and 6DN13 are proposed to be Gal beta1 --> 3Gal beta1 --> 4GlcNAc beta1 --> 2Man alpha1 --> 6 (Gal beta1 --> 3Gal beta1 --> 4GlcNAc beta1 --> 2Man alpha1 --> 3) Man beta1 --> 4GlcNAc beta1 --> 4 (Fuc alpha1 --> 6)GlcNAc-PA; 6M and 6D had 1 or 2 additional NeuAc residues at the non-reducing ends of 6MN13 and 6DN13, respectively.  相似文献   

4.
Influenza A and Sendai viruses bind to neolacto-series gangliosides isolated from human granulocytes. Differences in receptor specificity of influenza viruses A/PR/8/34 (H1N1), A/X-31 (H3N2), and parainfluenza Sendai virus (HNF1, Z-strain) were determined by two direct solid phase binding assays: the overlay technique, which combines high-resolution in the separation of gangliosides on thin-layer chromatograms with direct binding; and the microwell adsorption assay as a convenient binding assay which is performed in microtitre wells to estimate the avidity of binding to an isolated ganglioside. Both methods were applied for comparative binding studies. Viruses were found to exhibit specificity for oligosaccharides and sialic acids as well as for chain length of the neutral carbohydrate backbone, whereas differing fatty acids (C24:1 and C16:0) in the ceramide portion had no impact on virus adsorption. Terminal sialyloligosaccharides Neu5Ac alpha 2-3Gal beta 1-4Glc-R of GM3, and Neu5Ac alpha 2-3Gal beta 1-4GlcNAc-R as well as Neu5Ac alpha 2-6Gal beta 1-4GlcNAc-R of neolacto-series gangliosides with nLcOse4Cer and nLcOse6Cer backbone, exhibited significant specific receptor activity towards the different viruses. To compare the data revealed from both test systems, values of virus binding were ascertained by a non-parametric statistical approach based on rank correlation. The rank correlation coefficient rs was calculated according to Spearman from each virus binding towards GM3, IV3Neu5Ac-nLcOse4Cer, IV6Neu5Ac-nLcOse4Cer and VI3Neu5Ac-nLcOse6SCer. The rank correlation coefficients 0.74, 0.95 and 0.92, which were determined for A/PR/8/34 (H1N1), A/X-31 (H3N2) and Sendai virus (HNF1, Z-strain), respectively, indicated that both assays generate highly correlated experimental data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
E-selectin binding gangliosides were isolated from myelogenous leukemia HL60 cells, and the E-selectin binding pattern was compared with that of human neutrophils as described in the preceding paper in this issue. The binding fractions were identified as monosialogangliosides having a series of unbranched polylactosamine cores. Structures of fractions 12-3, 13-1, 13-2, and 14, which showed clear binding to E-selectin under the conditions described in the preceding paper, were characterized by functional group analysis by application of monoclonal antibodies, 1H-NMR, FAB-MS, and electrospray mass spectrometry with collision-induced dissociation of permethylated fractions. Fractions 12-3, 13-1, and 13-2 were characterized by the presence of a major ganglioside with the following structure: NeuAc alpha 2-->3Gal beta 1-->4 GlcNAc beta 1-->3Gal beta 1-->4(Fuc alpha 1-->3) GlcNAc beta 1-->3Gal beta 1-->4(Fuc alpha 1-->3)-GlcNAc beta 1-->3Gal beta 1-->4GlcNAc beta 1-->3 Gal beta 1-->4 Glc beta Cer. Fractions 12-3 and 13-2 contained, in addition, small quantities (10-15%) of extended SLex with internally fucosylated structures: NeuAc alpha 2-->3 Gal beta 1-->4-(Fuc alpha 1-->3) GlcNAc beta 1-->3 Gal beta 1-->4(Fuc alpha 1-->3) GlcNAc beta 1-->3 Gal beta 1-->4 (+/- Fuc alpha 1-->3)GlcNA c beta 1-->3 Gal beta beta 1-->4GlcNAc beta 1-->3 Gal beta 1-->Glc Beta Cer. Fraction 13-1, showing stronger E-selectin binding activity than 12-3 and 13-2, contained only a trace quantity (< 1%) of SLex. Fraction 14, which also showed clear binding to E-selectin, was characterized by the presence of the following structures, in addition to two internally monofucosylated structures (XX and XXI, Table 2, text): NeuAc alpha 2-->3Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc beta 1-->3 Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc beta 1-->3Gal beta 1-->4 GlcNAc beta 1-->3 Gal beta 1-->4 GlcNAc beta 1-->3 Gal beta 1-->4 Glc beta Cer; andNeuAc alpha 2-->3Gal beta 1-->4GlcNAc beta 1-->3 Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc beta 1-->3Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4 (Fuc alpha 1--3)-GlcNAc beta 1-->3Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1--4Glc beta Cer. SLex determinant was completely absent. Thus, the E-selectin binding epitope in HL60 cells is carried by unbranched terminally alpha 2-->3 sialylated polylactosamine having at least 10 monosaccharide units (4 N-acetyllactosamine units) with internal multiple fucosylation at GlcNAc. These structures are hereby collectively called "myeloglycan". Monosialogangliosides from normal human neutrophils showed an essentially identical pattern of gangliosides with selectin binding property. Myeloglycan, rather than SLex, provides a major physiological epitope in E-selectin-dependent binding of leukocytes and HL60 cells.  相似文献   

6.
Multiply branched polylactosaminoglycans are expressed in glycoproteins and glycolipids of many cells. Interest in their biology stems from their abundant expression in early embryonal cells and from their ability to carry multiple lectin-binding determinants, which makes them prominent ligands and antagonists of cell adhesion proteins. A prototype of their backbones is represented by the decasaccharide LacNAc beta1-3'(LacNAc beta1-6')LacNAc beta1-3'(LacNAc beta1-6')LacNAc (5), where LacNAc is the disaccharide Gal beta1-4GlcNAc. Here, we describe in vitro biosynthesis of glycan 5. Incubation of the linear hexasaccharide LacNAc beta1-3'LacNAc beta1-3'LacNAc (1) with UDP-GlcNAc and alpha midchain beta1,6-GlcNAc transferase activity (GlcNAc to Gal), present in rat serum [Gu, J., Nishikawa, A., Fujii, S., Gasa, S., & Taniguchi, N. (1992) J. Biol. Chem. 267, 2994-2999], gave the doubly branched octasaccharide LacNAc beta1-3'(GlcNAc beta1-6')LacNAc beta1-3'(GlcNAc beta1-6')LacNAc (4). The latter was converted to 5 by enzymatic beta1,4-galactosylation. In the initial branching reaction of 1, two isomeric heptasaccharide intermediates, LacNAc beta1-3'LacNAc beta1-3'(GlcNAc beta1-6')LacNAc (2) and LacNAc beta1-3'(GlcNAc beta1-6')LacNAc beta1-3'LacNAc (3), were formed first at comparable rates. Later, both intermediates were converted to 4, revealing two distinct pathways of the reaction: 1 --> 2 --> 4 and 1 --> 3 --> 4. These data suggest that, regardless of their chain length, linear polylactosamines similar to 1 contain potential branching sites at each of the internal galactoses. The enzyme-binding epitope of 1 is probably LacNAc beta1-3'LacNAc, because the trisaccharides GlcNAc beta1-3'LacNAc and LacNAc beta1-3Gal as well as the tetrasaccharide GlcNAc beta1-3'LacNAc beta1-3Gal were poor acceptors, while LacNAc beta1-3'LacNAc was a good one. Midchain beta1,6-GlcNAc transferase activities present in serum of several mammalian species, including man, resembled closely the rat serum activity in their mode of action and in their acceptor specificity. We suggest that analogous membrane-bound Golgi enzymes are involved in the biosynthesis of multiply branched polylactosamines in vivo.  相似文献   

7.
The carbohydrate moieties of hen ovomucoid were released as oligosaccharides by hydrazinolysis. The neutral oligosaccharide fraction which comprised about 85% of the total sugar was fractionated into eight oligosaccharide fractions by Bio-Gel P-4 column chromatography. Occurrence of novel penta-antennary oligosaccharides in the larger three fractions was reported in the preceding paper (Yamashita, K., Kamerling, J.P., and Kobata, A. (1982) J. Biol. Chem. 257, 12809-12814). Structural studies of the remaining smaller oligosaccharides indicated that they all have Man alpha 1 leads to 6(Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc as their common core. The alpha-mannosyl residues occur either free or as one of the following five groups: GlcNAc beta 1 leads to 2Man, GlcNAc beta 1 leads to 4Man, GlcNAc beta 1 leads to 4(GlcNAc beta 1 leads to 2)Man, GlcNAc beta 1 leads to 6(GlcNAc beta 1 leads to 2)Man, and GlcNAc beta 1 leads to 6(GlcNAc beta 1 leads to 4)(GlcNAc beta 1 leads to 2) Man. In most oligosaccharides, a beta-N-acetylglucosamine residue is linked at the C-4 position of the beta-mannosyl residue of the core. The structural characteristic of the sugar chains of hen ovomucoid indicated that they are not formed by the ordinary processing pathway of the asparagine-linked sugar chains.  相似文献   

8.
Artocarpin, a mannose-specific lectin, is a homotetrameric protein (M(r) 65,000) devoid of covalently attached carbohydrates and consists of four isolectins with pI in the range 5-6.5. Investigations of its carbohydrate binding specificity reveal that among monosaccharides, mannose is preferred over glucose. Among mannooligosaccharides, mannotriose (Man alpha 1-3[Man alpha 1-6]Man) and mannopentaose are the strongest ligands followed by Man alpha 1-3Man. Extension of these ligands by GlcNAc at the reducing ends of mannooligosaccharides tested remarkably improves their inhibitory potencies, while substitution of both the alpha 1-3 and alpha 1-6 mannosyl residues of mannotriose and the core pentasaccharide of N-linked glycans (Man alpha 1-3[Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc) by GlcNAc or N-acetyllactosamine in beta 1-2 linkage diminishes their inhibitory potencies. Sialylated oligosaccharides are non-inhibitory. Moreover, the substitution of either alpha 1-3 or alpha 1-6 linked mannosyl residues of M5Gn or both by mannose in alpha 1-2 linkage leads to a considerable reduction of their inhibitory power. Addition of a xylose residue in beta 1-2 linkage to the core pentasaccharide improves the inhibitory activity. Considering the fact that artocarpin has the strongest affinity for the xylose containing hepasaccharide from horseradish peroxidase, which differs significantly from all the mannose/glucose-specific lectins, it should prove a useful tool for the isolation and characterization of glycoproteins displaying such structure.  相似文献   

9.
Galactosyltransferase, sialyltransferase, and fucosyltransferase were used to create a panel of complex oligosaccharides that possess multiple terminal sialyl-Le(x) (NeuAc alpha 2-3Gal[Fuc alpha 1-3] beta 1-4GlcNAc) and GalNAc-Le(x) (GalNAc[Fuc alpha 1-3]beta 1-4GlcNAc). The enzymatic synthesis of tyrosinamide biantennary, triantennary, and tetraantennary N-linked oligosaccharides bearing multiple terminal sialyl-Le(x) was accomplished on the 0.5 mumol scale and the purified products were characterized by electrospray MS and 1H NMR. Likewise, biantennary and triantennary tyrosinamide oligosaccharides bearing multiple terminal GalNAc-Le(x) determinants were synthesized and similarly characterized. The transfer kinetics of human milk alpha 3/4-fucosyltransferase were compared for biantennary oligosaccharide acceptor substrates possessing Gal beta 1-4GlcNAc, GalNAc beta 1-4GlcNAc, and NeuAc alpha 2-3Gal beta 1-4GlcNAc which established NeuAc alpha 2-3Gal beta 1-4GlcNAc as the most efficient acceptor substrate. The resulting complex oligosaccharides were chemically tethered through the tyrosinamide aglycone to the surface of liposomes containing phosphatidylthioethanol, resulting in the generation of glycoliposomes probe which will be useful to study relationships between binding affinity and the micro- and macro-clustering of selectin ligand.  相似文献   

10.
The trisaccharide Gal alpha 1-->3Gal beta 1-->4GlcNAc beta 1-->O-(CH2)8COOCH3 was enzymatically synthesized, with in situ UDP-Gal regeneration. By combination in one pot of only four enzymes, namely, sucrose synthase, UDP-Glc 4'-epimerase, UDP-Gal:GlcNAc beta 4-galactosyltransferase and UDP-Gal:Gal beta 1-->4GlcNAc alpha 3-galactosyltransferase, Gal alpha 1-->3Gal beta 1-->4GlcNAc beta 1-->O-(CH2)8COOCH3 was formed in a 2.2 mumol ml-1 yield starting from the acceptor GlcNAc beta 1-->O-(CH2)8COOCH3. This is an efficient and convenient method for the synthesis of the Gal alpha 1-->3Gal beta 1-->4GlcNAc epitope which pays an important role in various biological and immunological processes.  相似文献   

11.
The major lipooligosaccharides of the sexually transmitted pathogen Haemophilus ducreyi 35000 have been previously found to terminate in N-acetyllactosamine and sialyl-N-acetyllactosamine, Neu5Ac alpha 2-->3Gal beta 1-->4GlcNAc (W. Melaugh, N. J. Phillips, A. A. Campagnari, M. V. Tullius, and B. W. Gibson, Biochemistry 33: 13070-13078, 1994). In this study, mass spectrometry and composition analyses have shown that the lipooligosaccharides from three other H. ducreyi strains also contain N-acetyllactosamine and are highly sialylated (approximately 30 to 50%), although one African strain was found to contain neither of these structural features.  相似文献   

12.
Neutral glycosphingolipids and gangliosides were isolated from 3.7 x 10(9) primary bovine aortic endothelial cells and structurally characterized by immunological and chemical methods. Glucosyl- and lactosylceramide were detected as the main neutral glycosphingolipids (28% and 40% of total orcinol stain, respectively); LcOse3Cer and nLcOse4Cer were expressed to somewhat minor amounts (16% and 10% of total orcinol stain, respectively), and nLcOse6Cer occurred only in trace quantities. No neutral glycosphingolipids of the ganglio-series (GgOse3Cer and GgOse4Cer) and the globo-series (GbOse4Cer and the Forssman antigen) have been detected; only traces of GbOse3Cer were identified by TLC immunostaining. Positive CD15 bands obtained by TLC overlay with anti-Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-R antibody indicated the presence of lipid bound Lewisx antigen, whereas the isomeric Lewis(a) structure (Gal beta1-3(Fuc alpha1-4)GlcNAc beta1-R) was not detectable. G(M3) substituted with Neu5Gc and Neu5Ac in a 2:1 ratio was the major ganglioside comprising about 95% within the whole ganglioside fraction. G(M3)-structures were further characterized by FAB-MS and GC-MS of the native compounds and their permethylated derivatives. C18-sphingosine was the only long chain base, whereas variation occurred due to C(24:0,24:1) and C16 fatty acids. Terminally alpha2-3 sialylated neolacto-series gangliosides with nLcOse4- and nLcOse6Cer (<5% of total resorcinol stain) were found in almost equal quantities, whereas no alpha2-6 sialylated counterparts were detected. Fucosylated gangliosides with poly-N-acetyllactosaminyl chains (sialyl Lewis[x], sialyl Lewisa, and VIM-2 antigen) and sulfoglucuronylneolacto series structures with HNK-1 epitope were not detectable in the acidic glycosphingolipid fraction by TLC immunostaining. Gangliotetraose-type gangliosides G(M1) and G(D1a) (<1 % of total resorcinol stain) as well as traces of G(D1b) and G(T1b) have been distinctly identified by combined choleragenoid-TLC-immunostaining and previous neuraminidase treatment. The expression of dominant glycosphingolipids lactosylceramide and G(M3)(Neu5Gc) was proved by indirect immunofluorescence microscopy of cell layers grown in chamber slides, each showing different plasma membrane and subcellular distribution patterns. The results provide the basis for investigation of the role of glycosphingolipids as cell surface antigens of cellular interaction as well as receptors for blood components and macromolecules of the extracellular matrix.  相似文献   

13.
Three IgM class anti-H monoclonal antibodies (1E3, 1E5 and 3H1) were obtained from a BALB/c mouse immunized with human O type saliva. These antibodies were found to agglutinate red cells from O group and A and B subgroups but not from Bombay and para-Bombay individuals whose H antigen was barely detected by anti-H reagents. The agglutination reactions of these antibodies were inhibited by H antigens from human tissues. It was also demonstrated that both 1E3 and 3H1 reacted with H disaccharide (Fuc alpha 1-->2Gal beta), H type 1 (Fuc alpha 1-->2Gal beta 1-->3GlcNAc beta), H type 2 (Fuc alpha 1-->2Gal beta 1-->4GlcNAc beta), H type 3 (Fuc alpha 1-->2Gal beta 1-->3GalNAc alpha) and H type 4 (Fuc alpha 1-->2Gal beta 1-->3GalNAc beta) but not with Lea (Gal beta 1-->3[Fuc alpha 1-->4]GlcNAc beta), Leb (Fuc alpha 1-->2Gal beta 1-->3[Fuc alpha 1-->4]GlcNAc beta), X (Gal beta 1-->4[Fuc alpha-->3]GlcNAc beta) or Y (Fuc alpha 1-->2Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc beta). On the other hand, 1E5 was found to react with H type 1, H type 2, Leb and Y. Because of the unique reactivities against various fucosyl linkages these monoclonal antibodies could be useful not only as anti-H reagents but also as reagents for the structural analysis of fucosylated glycoconjugates.  相似文献   

14.
Enzymatic 3-O-sulfation of terminal beta-Gal residues was investigated by screening sulfotransferase activity present in 37 human tissue specimens toward the following synthesized acceptor moieties: Galbeta1,3GalNAc alpha-O-Al, Galbeta1,4GlcNAcbeta-O-Al, Galbeta1,3GlcNAcbeta-O-Al, and mucin-type Galbeta1,4GlcNAcbeta1,6(Galbeta1,3)GalNAc alpha-O-Bn structures containing a C-3 methyl substituent on either Gal. Two distinct types of Gal: 3-O-sulfotransferases were revealed. One (Group A) was specific for the Galbeta1, 3GalNAc alpha- linkage and the other (Group B) was directed toward the Galbeta1,4GlcNAc branch beta1,6 linked to the blood group T hapten. Enzyme activities found in breast tissues were unique in showing a strict specificity for the T-hapten. Galbeta-O-allyl or benzyl did not serve as acceptors for Group A but were very active with Group B. An examination of activity present in six human sera revealed a specificity of the serum enzyme toward beta1,3 linked Gal, particularly, the T-hapten without beta1,6 branching. Group A was highly active toward T-hapten/acrylamide copolymer, anti-freeze glycoprotein, and fetuin O-glycosidic asialo glycopeptide; less active toward fetuin triantennary asialo glycopeptide; and least active toward bovine IgG diantennary glycopeptide. Group B was moderately and highly active, respectively, with the latter two glycopeptides noted and least active with the first two. Competition experiments performed with Galbeta1,3GalNAc alpha-O-Al and Galbeta1,4GlcNAcbeta1,6(Galbeta1,3)GalNAc alpha-O-Bn having a C-3 substituent (methyl or sulfate) on either Gal reinforced earlier findings on the specificity characteristics of Group A and Group B. Group A displayed a wider range of optimal activity (pH 6.0-7.4), whereas Group B possessed a peak of activity at pH 7.2. Mg2+ stimulated Group A 55% and Group B 150%, whereas Mn+2 stimulated Group B 130% but inhibited Group A 75%. Ca2+ stimulated Group B 100% but inhibited Group A 35%. Group A and Group B enzymes appeared to be of the same molecular size (<100,000 Da) as observed by Sephacryl S-100 HR column chromatography. The following effects upon Gal: 3-O-sulfotransferase activities by fucose, sulfate, and other substituents on the carbohydrate chains were noted. (1) A methyl or GlcNAc substituent on C-6 of GalNAc diminished the ability of Galbeta1,3GalNAc alpha-O-Al to act as an acceptor for Group A. (2) An alpha1,3-fucosyl residue on the beta1,6 branch in the mucin core structure did not affect the activity of Group A toward Gal linked beta1,3 to GalNAc alpha-. (3) Lewis x and Lewis a terminals did not serve as acceptors for either Group A or B enzymes. (4) Elimination of Group B activity on Gal in the beta1,6 branch owing to the presence of a 3-fucosyl or 6-sulfo group on GlcNAc did not hinder any action toward Gal linked beta1,3 to GalNAc alpha. (5) Group A activity on Gal linked beta1,3 to GalNAc remained unaffected by 3'-sulfation of the beta1,6 branch. The reverse was true for Group B. (6) The acceptor activity of the T-hapten was increased somewhat upon C-6 sulfation of GalNAc, whereas, C-6 sialylation resulted in an 85% loss of activity. (7) A novel finding was that Galbeta1,4GlcNAcbeta-O-Al and Galbeta1,3GlcNAcbeta-O-Al, upon C-6 sulfation of the GlcNAc moiety, became 100% inactive and 5- to 7-fold active, respectively, in their ability to serve as acceptors for Group B.  相似文献   

15.
Oligosaccharides on invertase restricted to the endoplasmic reticulum (ER) in alg3,sec18 yeast at 37 degrees C were found to be 20% wild type Man8GlcNAc and 80% Man1 alpha-->2Man1 alpha-->2Man1 alpha-->3(Man1 alpha-->6)Man1 beta-->4GlcNAc2 (Verostek, M.F., Atkinson, P.H., and Trimble, R. B. (1991) J. Biol. Chem. 266, 5547-5551). These results suggested that alg3 was slightly leaky, but did not address whether the oligosaccharide-lipid Man9GlcNAc2 and Man5GlcNAc2 precursors were glucosylated in alg3 yeast. Therefore, an alg3,sec18,gls1 strain was constructed to delete the GLS1-encoded glucosidase I responsible for trimming the terminal alpha 1,2-linked glucose from newly transferred Glc3ManxGlcNAc2 oligosaccharides. Invertase activity was overexpressed 5-10-fold on transforming this strain with a multicopy plasmid (pRB58) carrying the SUC2 gene, and preparative amounts of the ER form of external invertase, derepressed and accumulated at 37 degrees C, were purified. The N-linked glycans were released by sequential treatment with endo-beta-N-acetylglucosaminidase H (endo H) and peptide-N4-N-acetyl-beta-glucosaminyl asparagine amidase. Oligosaccharide pools were sized separately on Bio-Gel P-4, which showed that endo H released about 17% of the carbohydrate as Glc3Man8GlcNAc, while peptide-N4-N-acetyl-beta-glucosaminyl asparagine amidase released the remainder as Hex8GlcNAc2 and Man5GlcNAc2 in a 1:4 ratio. Glycan structures were assigned by 500-MHz two-dimensional DQF-COSY 1H NMR spectroscopy, which revealed that the endo H-resistant Hex8GlcNAc2 pool contained Glc3Man5GlcNAc2 and Man8GlcNAc2 in a 6:4 ratio, the latter a different isomer from that formed by the ER alpha 1,2-mannosidase (Byrd, J. C., Tarentino, A. L., Maley, F., Atkinson, P. H., and Trimble, R. B. (1982) J. Biol. Chem. 257, 14657-14666). Recovery of Glc3Man8GlcNAc and not the ER form of Man8GlcNAc provided an internal control indicating the absence of glucosidase I, which was confirmed by incubation of [3H]Glc3[14C]Man9GlcNAc with solubilized membranes from either alg3,sec18,gls1 or alg3,sec18,GLS1 strains. Chromatographic analysis of the products showed that [3H]Glc was removed only in the presence of the GLS1 gene product. Thus, the vast majority of the N-linked glycosylation in the ER of alg3 yeast (> 75%) occurs by transfer of Man5GlcNAc2 without prior addition of the 3 glucoses normally found on the lipid-linked precursor.  相似文献   

16.
beta-All-trans-retinoic acid (RA)-induced endodermal differentiation of mouse F9 teratocarcinoma cells is accompanied by changes in glycoprotein glycosylation, including expression of i antigen (i.e. polylactosamine) and leukophytohemagglutinin-reactive oligosaccharides (i.e. -GlcNAc beta 1-6Man alpha 1-6-branched N-linked). We have used the F9 teratocarcinoma cells as a model to study developmental regulation of glycosyltransferase activities which are responsible for the biosynthesis of beta 1-6GlcNAc-branched N- and O-linked oligosaccharides and polylactosamine. Growth of F9 cells in the presence of 10(-6) M RA for 4 days increased core 2 GlcNAc transferase and GlcNAc transferase V activities by 13- and 6-fold, respectively, whereas the activities of GlcNAc transferase I, beta 1-3GlcNAc transferase (i), beta 1-4Gal transferase, and beta 1-3Gal transferase increased 2-4-fold. Induction of glycosyltransferase activities by RA was dose-dependent and showed a biphasic response with approximately half of the increase observed 3 days after RA treatment and the remainder occurred by day 4. PYS-2, a parietal endoderm cell line, showed levels of glycosyltransferase activities similar to those of RA-treated F9 cells. Glycosyltransferase activities in the RA-resistant F9 cell line (RA-3-10) were low and showed only a small induction by RA. These observations suggest that differentiation of F9 cells is closely associated with induction of multiple glycosyltransferase activities, with most pronounced increases in GlcNAc transferase V and 2',5'-tetradenylate (core 2) GlcNAc transferase. The increase in GlcNAc transferase V was also reflected by the 4-6-fold increase in the binding of 125I-leukophytohemagglutinin to several cellular glycoproteins, which occurred after 3 days of RA treatment. The endo-beta-galactosidase-sensitive polylactosamine content of membrane glycoproteins and, in particular, the LAMP-1 glycoprotein was markedly increased after RA treatment of F9 cells. Consistent with these observations, fucosylated polylactosamine (i.e. dimeric Lex) was also increased in RA-treated cells. Analysis of the aryl oligosaccharides produced by F9 cells cultured in the presence of aryl alpha-D-GalNAc showed that RA treatment enhanced the synthesis of disialyl core 2 O-linked oligosaccharides and increased the polylactosamine content of the aryl oligosaccharides by > 20-fold. The results suggest that differentiation of F9 cells into endoderm is closely associated with increased GlcNAc transferase V and core 2 GlcNAc transferase activities, enzymes which control the level of beta 1-6GlcNAc-branched N- and O-linked oligosaccharides, the preferred substrates for polylactosamine addition.  相似文献   

17.
The interaction of Japanese elderberry bark lectin (Sambucus sieboldiana agglutinin, SSA) with carbohydrate was investigated by 1H-NMR. When a low affinity ligand, methyl beta-D-galactoside (beta MeGal), was mixed with SSA, each proton signal of beta MeGal was broadened. The signal of H-4 was markedly broad, while those of H-1, OCH3, and H-2 of beta MeGal were rather sharp. The specific broadening of Gal H-4 was more evident when SSA was mixed with methyl-beta-D-lactoside (beta MeLac). Position-dependent signal broadening suggests that beta MeGal binds to SSA such that H-4 is closely involved in the contact region, but H-1, OCH3, and H-2 are far from this region. In the case of a high affinity ligand, Neu5Ac(alpha 2-6)Gal(beta 1-4)Glc(= N6L), ligand signals of the SSA-N6L mixture did not change at all. But when a small amount of N6L was added to the SSA-beta MeGal mixture, the broad signals of bound beta MeGal became dramatically sharp. This indicates that the added N6L molecules liberated the bound beta MeGal from SSA. On the other hand, the sialyllactose with the alpha(2-3)-linkage(= N3L) could not substitute for bound beta MeGal because of its lower affinity. This demonstrates that the competitive binding experiment between two ligands is a useful technique to detect the interaction of lectins with high affinity ligands which could not be observed directly by NMR signal broadening and/or chemical shift change.  相似文献   

18.
The properties of the N-glycan processing glycosidases located in the endoplasmic reticulum of Saccharomyces cerevisiae are described. alpha-Glucosidase I encoded by CWH41 cleaves the terminal alpha1, 2-linked glucose and alpha-glucosidase II encoded by ROT2 removes the two alpha1,3-linked glucose residues from the Glc3Man9GlcNAc2 oligosaccharide precursor while the alpha1,2-mannosidase encoded by MNS1 removes one specific mannose to form a single isomer of Man8GlcNAc2. Although trimming by these glycosidases is not essential for the formation of N-glycan outer chains, recent studies on mutants lacking these enzymes indicate that alpha-glucosidases I and II play an indirect role in cell wall beta1,6-glucan formation and that the alpha1,2-mannosidase is involved in endoplasmic reticulum quality control. Detailed structure-function studies of recombinant yeast alpha1,2-mannosidase are described that serve as a model for other members of this enzyme family that has been conserved through eukaryotic evolution.  相似文献   

19.
Three endopolygalacturonases (endoPG Ia, Ib, and Ic) were isolated from the culture filtrate of Stereum purpureum, the causative fungus of apple silver-leaf disease. Their properties, including specific activities, optimum pHs, thermal stabilities, and kinetic parameters (K(m) and Vmax) were compared. Their properties were very similar to one another except for the substrate specificity and relative molecular mass. The sugar chains of endoPG Is were released by hydrazinolysis, and one major sugar chain common to endoPG Is was isolated. The pyridylamino sugar was characterized by a two-dimensional mapping method using HPLC, and identified as a high mannose type N-linked sugar chain, Man alpha 1-6(Man alpha 1-3)Man alpha 1-6(Man alpha 1-3) Man beta 1-4 GlcNAc beta 1-4 GlcNAc (designated as M5.1). Observation of the course of Western blot analysis for the proteins from the culture filtrate with endoPG I antibodies showed that the fungus secreted three endoPG Is into the culture broth during the growing period.  相似文献   

20.
A novel saccharide was synthesized by incubating globo-N-tetraose, GalNAc beta1-3Gal alpha1-4Gal beta1-4Glc, and UDP[3H]GlcNAc with hog gastric mucosal microsomes, known to contain beta1,6-N-acetylglucosaminyltransferase activity of a broad acceptor specificity. Chromatography and MALDI-TOF mass spectrometry of the product, as well as the amount of incorporated radioactivity indicated that one [3H]GlcNAc residue was transferred to the acceptor saccharide. One- and two-dimensional 1H NMR-spectroscopic analysis of the product and ESI-CID mass spectrometry of the pentasaccharide in permethylated form established its structure as GalNAc beta1-3([3H]GlcNAc beta1-6)Gal alpha1-4Gal beta1-4Glc. The new enzyme activity possesses substrate specificity features common to a purified beta1,6-GlcNAc-transferase from bovine tracheal epithelium, which forms branches at the subterminal beta1,3-substituted galactose and accepts both GlcNAc- and Gal-configuration at the terminal residue of the acceptor (Ropp et al. (1991) J. Biol. Chem., 266, 23863-23871). The new beta1,6-GlcNAc-branch was readily galactosylated by bovine milk beta1,4-galactosyltransferase, revealing a pathway to novel hybrid type glycans with N-acetyllactosamine chains on globotype saccharides. This pathway may lead to the rare IP blood-group antigen and to globoside-like molecules mediating cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号