首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Signaling across integrins is regulated by interaction of these receptors with cytoskeletal proteins and signaling molecules. To identify molecules interacting with the cytoplasmic domain of the beta3-integrin subunit (glycoprotein IIIa), a placental cDNA library was screened in the yeast two-hybrid system. Two identical clones coding for a 96-amino acid sequence were identified. This sequence was 100% identical to a sequence in skelemin, a protein identified previously in skeletal muscle. Skelemin is a member of a superfamily of cytoskeletal proteins that contain fibronectin-type III-like motifs and immunoglobulin C2-like motifs and that regulate the organization of myosin filaments in muscle. The amino acid residues in the isolated clones encompassed C2 motifs 4 and 5 of skelemin. A recombinant skelemin protein consisting of C2 motifs 3-7 interacted with beta1- and beta3-integrin cytoplasmic domains expressed as glutathione S-transferase (GST) fusion proteins, but not with GST-beta2-integrin cytoplasmic tail or GST alone. The skelemin-binding region was in the membrane proximal cytoplasmic domains of the integrins. Full-length skelemin interacted with integrin in intact cells as demonstrated by the colocalization of hemagglutinin-tagged skelemin in Chinese hamster ovary (CHO) cells containing alphaIIbbeta3-integrin and by the finding that microinjection of C2 motif 4 of skelemin into C2C12 mouse myoblast cells caused spread cells to round up. A skelemin-like protein was detected in CHO cells, endothelial cells, and platelets, and this protein colocalized with beta1- and beta3-integrins in CHO cells. This study suggests the presence of a skelemin-like protein in non-muscle cells and provides evidence that it may be involved in linking integrins to the cytoskeleton.  相似文献   

3.
4.
Mouse mammary tumor virus (MMTV) infects a number of different cell types, including mammary gland and lymphoid cells, in vivo. To identify the cellular receptor for this virus, a mouse cDNA expression library was transfected into Cos-7 monkey kidney cells, and those transfected cells able to bind virus were selected by using antibody against the virus's cell surface envelope protein, gp52. One clone isolated from a library prepared from newborn thymus RNA, called MTVR, was able to confer virus binding to both monkey and human cells; this binding was blocked by anti-MTVR antibody. Moreover, transfection of MTVR into CV1 cells rendered them susceptible to infection by a murine leukemia virus-based retrovirus vector pseudotyped with the MMTV envelope protein. An epitope-tagged MTVR cofractionated with cellular membranes. Coimmunoprecipitation of the MMTV envelope protein and a MTVR-rabbit Fc fusion protein showed that these two proteins bound to each other. The MTVR sequence clone is unique, shows no homology to known membrane proteins, and is transcribed in many tissues.  相似文献   

5.
We screened a Xenopus laevis oocyte cDNA expression library with a Src homology 3 (SH3) class II peptide ligand and identified a 1270-amino acid-long protein containing two Eps15 homology (EH) domains, a central coiled-coil region, and five SH3 domains. We named this protein Intersectin, because it potentially brings together EH and SH3 domain-binding proteins into a macromolecular complex. The ligand preference of the EH domains were deduced to be asparajine-proline-phenylalanine (NPF) or cyclized NPF (CX1-2NPFXXC), depending on the type of phage-displayed combinatorial peptide library used. Screens of a mouse embryo cDNA library with the EH domains of Intersectin yielded clones for the Rev-associated binding/Rev-interacting protein (RAB/Rip) and two novel proteins, which we named Intersectin-binding proteins (Ibps) 1 and 2. All three proteins contain internal and C-terminal NPF peptide sequences, and Ibp1 and Ibp2 also contain putative clathrin-binding sites. Deletion of the C-terminal sequence, NPFL-COOH, from RAB/Rip eliminated EH domain binding, whereas fusion of the same peptide sequence to glutathione S-transferase generated strong binding to the EH domains of Intersectin. Several experiments support the conclusion that the free carboxylate group contributes to binding of the NPFL motif at the C terminus of RAB/Rip to the EH domains of Intersectin. Finally, affinity selection experiments with the SH3 domains of Intersectin identified two endocytic proteins, dynamin and synaptojanin, as potential interacting proteins. We propose that Intersectin is a component of the endocytic machinery.  相似文献   

6.
The stress70 protein chaperone family plays a central role in the processing of cytosolic and secretory proteins. We have cloned a human cDNA, designated Stch, that is conserved in rat tissues and which encodes a novel microsome-associated member of the stress70 protein chaperone family. Stch mRNA is constitutively expressed in all human cell types and is induced by incubation with the calcium ionophore A23187, but not by exposure to heat shock. Inspection of the predicted amino acid sequence reveals that the STCH product contains a unique hydrophobic leader sequence and shares homology within the amino terminal domains of the stress70 gene family, but has a 50 residue insertion within the ATP-binding domains and truncates the carboxyl terminal peptide-binding region. Immunofluorescent and subcellular analyses show that STCH migrates predominantly as a 60 kDa species and is enriched in a membrane-bound microsome fraction. In contrast to purified BiP and dnaK, however, STCH demonstrates ATPase activity that is independent of peptide stimulation. Stch, therefore, encodes a calcium-inducible, microsome-associated ATPase activity with properties similar to a proteolytically cleaved N-terminal HSC70/BiP fragment. This truncated stress70 molecule may allow increased diversity in cellular responses to protein processing requirements.  相似文献   

7.
The bacterial fusion protein between glutathione S-transferase and the central conserved region of human p53(GST-p53) was purified and fixed on the beads and then used in the binding assay with radiolabeled cell extract from human hepatocarcinoma cell line, Hep3B. The binding assay disclosed the presence of cellular proteins that interact with GST-p53 but not with GST. SV40 large T antigen abrogated the bindings of two cellular proteins with molecular weights of 50 kda and 40 kda. The binding of the proteins to p53 was observed in a cell cycle-dependent manner. These two proteins are candidate cellular proteins which regulate the function of p53.  相似文献   

8.
To identify serum-inducible genes in the insulin-producing cell line beta TC-1, a library subtraction screening procedure was performed on serum-deprived (G0) and serum-restimulated (G1) insulin-producing beta TC-1 cells. A cDNA containing a motif with strong homology to Src homology 2 (SH2) domains was found using this procedure and called Shb. The Shb cDNA contains two methionine codons in its N-terminus and thus may code for two proteins of 67 and 56 kDa, each with one SH2 domain in its C-terminus. No other structural similarity to proteins with catalytic activity could be detected, suggesting that Shb is a so called adaptor. Shb contains the proline-rich sequence PPPGPGR between the two proposed initiator methionines which resembles a sequence for binding to Src homology 3 (SH3) domains. A second proline-rich sequence was detected after the second methionine codon. The Shb cDNA hybridized to a similar or identical mRNA of 3.1 kb expressed in mouse brain, liver, kidney, heart, NIH3T3 fibroblasts and beta TC-1 cells. Western blot analysis of the same tissues using an antiserum directed against a synthetic peptide corresponding to a part of the SH2 domain of Shb, revealed reactivity with two proteins of 56 and 67 kDa. In addition, a third reactive component of 40 kDa was detected in most tissues. Transfection and transient expression of the Shb cDNA in COS-1 cells yielded increased expression of the 67, 56 and 40 kDa proteins. Transfection and stable expression of the Shb cDNA in pig aortic endothelial cells showed increased expression primarily of the 67 kDa protein. A fusion protein consisting of the SH2 domain of Shb linked to glutathione S-transferase showed increased binding to glycoproteins of cells stimulated with platelet-derived growth factor (PDGF-BB). Furthermore, the autophosphorylated PDGF beta-receptor but not the autophosphorylated epidermal growth factor (EGF) receptor bound specifically to immobilized fusion protein. It is concluded that Shb is a novel SH2-containing protein with proline-rich domains and therefore probably involved in the signal-transduction of some ligand-activated tyrosine kinase receptors.  相似文献   

9.
The RING-finger is a unique zinc-chelating domain involved in mediating protein-protein interactions. The extensive sequence homology within the RING-finger domain allowed us to clone a novel member of the RING-finger family of genes. This cDNA clone, designated RNF5 (Ring-finger protein 5), contained an open reading frame of 540 nucleotides. Its predicted amino acid sequence revealed significant homology to a hypothetical protein encoded by Caenorhabditis elegans cosmid C16C10.7. The expression of RNF5 was detected in a variety of human tissues. The RNF5 gene was mapped by fluorescence in situ hybridization to chromosome 6p21.31. Radiation hybrid mapping further assigned RNF5 to a region proximal to the major histocompatibility complex (MHC) on chromosome 6. RNF5 is the third RING-finger gene identified in the region proximal to MHC raising the possibility that the RING-finger family of genes may exist as a cluster in this region.  相似文献   

10.
11.
12.
The Schizosaccharomyces pombe genes, nda1 and nda4, are essential for the normal regulation of DNA replication and belong to the MCM gene family. This gene family includes Saccharomyces cerevisiae MCM2, MCM3, MCM5/CDC46 and CDC47, S. pombe nda1, nda4, cdc21 and mis5, and genes encoding human BM28, P1MCM3 and P1.1MCM3 and mouse P1MCM3, most of which are considered to be required for the initiation of DNA replication. We isolated two homologues of the MCM genes, xMCM2 and xCDC46, from a Xenopus laevis cDNA library using the polymerase chain reaction (PCR) method. The predicted amino acid (aa) sequences of xMCM2 and xCDC46 are most similar to those of human BM28 (78% identity) and S. pombe Nda4 (48% identity), respectively. By Western blot analysis using anti-xMCM2 and anti-xCDC46 polyclonal antibodies (Ab) raised against glutathione S-transferase (GST)::xMCM2 or GST::xCDC46 fusion proteins, xMCM2 and xCDC46 were identified as 120- and 95-kDa proteins, respectively. When either xMCM2 or xCDC46 was immunoprecipitated with the specific Ab, the other was also co-precipitated. These results suggest that xMCM2 and xCDC46 physically interact with each other.  相似文献   

13.
We recently identified a 28-kDa protein in the intestinal brush border that resembled tropomyosin in terms of size, homology, and alpha helical content. This protein contained 27 heptad repeats, nearly all of which began with leucine, leading to its name zipper protein. Subsequent analysis, however, indicated that both a 49-kDa and a 28-kDa immunoreactive protein existed in intestinal brush-border extracts. Using 5'-rapid amplification of cDNA ends analysis, we extended the N-terminal sequence of zipper protein to the apparent translation start site. This additional sequence contained a putative transmembrane domain and two potential tryptic cleavage sites C-terminal to the transmembrane domain which would release a 28-kDa cytoplasmic protein if utilized. The additional sequence was highly homologous to members of the B-G protein family, a family with no known function. Immunoelectron microscopy showed that zipper protein was confined to the membrane of the microvillus where it was in close association with brush-border myosin 1 (BBM1). Recombinant zipper protein (28-kDa cytoplasmic portion) blocked the binding of actin to BBM1 and inhibited actin-stimulated BBM1 ATPase activity. In contrast, zipper protein had no effect on endogenous or K/EDTA-stimulated BBM1 ATPase activity. Furthermore, zipper protein displaced tropomyosin from binding to actin, suggesting that these homologous proteins bind to the same sites on the actin molecule. We conclude that zipper protein is a transmembrane protein of the B-G family localized to the intestinal epithelial cell microvillus. The extended cytoplasmic tail either in the intact molecule or after tryptic cleavage may participate in regulating the binding and, thus, activation of BBM1 by actin in a manner similar to tropomyosin.  相似文献   

14.
15.
In this study, we identify new isoforms of the retinal phosducin and investigate the expression of the phosducin family, showing that an isoform, PhLP1, has sequence homology with Phd and Gbeta gamma binding capability, whereas two isoforms (phosducin-like orphan proteins, PhLOPs) share sequence homology with Phd but fail to bind Gbeta gamma. Original identification of PhLP1 and the PhLOPs was from a human retina cDNA library, using a PCR product for library hybridization screening that contained a predicted functional epitope domain. The screen identified Phd and three related, but distinct, recombinants (PhLP1, PhLOP1, and PhLOP2). By RT-PCR, all isoforms are expressed in either retina or forskolin-stimulated Y79 retinoblastoma cells; however, the new isoforms are below the level of detection on Northern blot analysis. The predicted amino acid translation of each homologue revealed major differences, arising from either splice variants or gene duplication of Phd. To test the functional interaction of all phosducin isoforms with Gbeta gamma in vitro, a glutathione S-transferase (GST) fusion protein was developed for each member. Biochemical interaction with purified retinal transducin Gbeta gamma was verified for GST-Phd and demonstrated for GST-PhLP1; however, neither GST-PhLOP1 nor GST-PhLOP2 bound Gbeta gamma. Comparable results were observed when the GST-phosducin fusion proteins selectively sequestered Gbeta gammas from retinal extracts or when functional Gbeta gamma interactions were assessed using surface plasmon resonance technology. Phosducin and its isoforms are widely distributed in body tissues where they may participate in signal transduction pathways. Phd and PhLP1 possess an 11-amino acid conserved epitope domain (TGPKGVINDWR) that controls the high-affinity binding of Gbeta gamma; these isoforms are implicated in the G-protein signaling pathway. The phosducin-like orphan proteins (PhLOPs) fail to bind Gbeta gamma, suggesting that the PhLOP isoforms may participate in still unidentified signaling pathways.  相似文献   

16.
Heterotrimeric G proteins transduce multiple growth-factor-receptor-initiated and intracellular signals that may lead to activation of the mitogen-activated or stress-activated protein kinases. Herein we report on the identification of a novel p53 target gene (A28-RGS14) that is induced in response to genotoxic stress and encodes a novel member of a family of regulators of G protein signaling (RGS) proteins with proposed GTPase-activating protein activity. Overexpression of A28-RGS14p protein inhibits both Gi- and Gq-coupled growth-factor-receptor-mediated activation of the mitogen-activated protein kinase signaling pathway in mammalian cells. Thus, through the induction of A28-RGS14, p53 may regulate cellular sensitivity to growth and/or survival factors acting through G protein-coupled receptor pathways.  相似文献   

17.
In this report the effects of single doses of ionizing radiation on the mRNA expression of several proteins involved in multiple drug resistance were analyzed. Murine NIH 3T3 cells treated with single doses of 5, 10 and 20 Gy during the time interval from 1.5 to 72 h after irradiation were compared with their corresponding controls at the same points of time. The glutathione S-transferase-pi (GST pi) level was elevated in cells treated with 10 or 20 Gy from 24 to 72 h after irradiation compared with the control. Topoisomerase II alpha and thymidylate synthase were decreased in irradiated cells 24-72 h after exposure. These down-regulations were associated with cellular proliferation, determined by mRNA expression of the proliferation marker histone 3. Irradiated cells exhibited no alteration in the P-glycoprotein or glutathione peroxidase mRNA content. The finding that GST pi mRNA was overexpressed after irradiation was validated by investigations on a human lung carcinoma cell line (LXF 289) on the mRNA and protein level. Thus, our results indicate that irradiation alters the expression of proteins involved in multidrug resistance and may, therefore, play a role in clinical drug response.  相似文献   

18.
We recently identified a novel gene (PB39) (HGMW-approved symbol POV1) whose expression is up-regulated in human prostate cancer using tissue microdissection-based differential display analysis. In the present study we report the full-length sequencing of PB39 cDNA, genomic localization of the PB39 gene, and genomic sequence of the mouse homologue. The full-length human cDNA is 2317 nucleotides in length and contains an open reading frame of 559 amino acids which does not show homology with any reported human genes. The N-terminus contains charged amino acids and a helical loop pattern suggestive of an srp leader sequence for a secreted protein. Fluorescence in situ hybridization using PB39 cDNA as probe mapped the gene to chromosome 11p11.1-p11.2. Comparison of PB39 cDNA sequence with murine sequence available in the public database identified a region of previously sequenced mouse genomic DNA showing 67% amino acid sequence homology with human PB39. Based on alignment and comparison to the human cDNA the mouse genomic sequence suggests there are at least 14 exons in the mouse gene spread over approximately 100 kb of genomic sequence. Further analysis of PB39 expression in human tissues shows the presence of a unique splice variant mRNA that appears to be primarily associated with fetal tissues and tumors. Interestingly, the unique splice variant appears in prostatic intraepithelial neoplasia, a microscopic precursor lesion of prostate cancer. The current data support the hypothesis that PB39 plays a role in the development of human prostate cancer and will be useful in the analysis of the gene product in further human and murine studies.  相似文献   

19.
The human ST5 gene encodes three proteins with predicted molecular masses of 126, 82, and 70 kDa. These widely expressed proteins share a C-terminal region that bears significant sequence homology to a group of GDP/GTP exchange proteins for the Rab3 family of small GTP binding proteins. The N-terminal region of the largest ST5 protein, p126, contains two proline-rich sequences, PR1 and PR2, with consensus motifs similar to Src homology 3 (SH3) binding regions and to mitogen-activated protein kinase (MAPK) phosphorylation sites. Based on these properties, we sought to investigate the activity of ST5 proteins in signal transduction pathways. In vitro, p126 displayed preferential binding to c-Abl SH3, as compared with other SH3 domains. This interaction was mediated by the PR2 sequence. In vivo, expression of p126, but not p82 or p70, activated MAPK/ERK2 in response to EGF in COS-7 cells. Expression of c-Abl with p126 greatly enhanced this activity. Deletion of PR1 blocked the ability of p126 to activate ERK2. Deletion of PR2 did not affect the basal activity, but blocked the stimulatory effect of c-Abl. Whereas p82 expression had no effect on ERK2 activation by p126, p70 completely abrogated this activity. These observations suggest that ST5 can function as a signaling protein and can provide a link between c-Abl and ERK2.  相似文献   

20.
The human DDX6 gene (alias RCK) at chromosome 11 band q23 was identified through the study of the breakpoint of t(11;14)(q23;q32) translocation in a B-cell lymphoma cell line, RC-K8. DDX6 encodes a DEAD box protein/RNA helicase. Positive mouse genomic and cDNA recombinant clones were obtained by screening mouse B-cell genomic and cDNA libraries with a human DDX6 cDNA probe. The deduced amino acid sequence of an open reading frame from a cDNA clone revealed a protein with 92.5% identity to human ddx6/p54. All positive mouse genomic recombinant clones, and cDNA clones containing mouse Ddx6 (previous gene symbol: Rck), were localized by fluorescent in situ hybridization to band B of mouse Chromosome 9, a region showing conserved linkage homology to human chromosome 11 band q23. Mouse Ddx6 was localized to the region between Ncam and D9Mit45 by molecular linkage analysis. A 7.5-kb mRNA and a 54-kDa protein were identified as mouse Ddx6 gene products which are similar in size to products of the human DDX6 gene, as shown by Northern and Western blot analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号