首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study elucidates the microwave dielectric properties and microstructures of Ca(Nb1?xTax)2O6 ceramics with a view to their potential for microwave devices. The Ca(Nb1?xTax)2O6 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the Ca(Nb0.93Ta0.07)2O6 ceramics revealed no significant variation of phase with sintering temperatures. A dielectric constant (? r ) of 17.7, a quality factor (Q × f) of 117,000 GHz, and a temperature coefficient of resonant frequency (τ f ) of ?51 ppm/°C were obtained for Ca(Nb0.93Ta0.07)2O6 ceramics that were sintered at 1,400 °C for 4 h.  相似文献   

2.
3.
The (1 ? y)Nd1?xYbx(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics were prepared by the conventional solid-state method. The X-ray diffraction patterns of the Nd1?xYbx(Mg0.5Sn0.5)O3 ceramics revealed that Nd1?xYbx(Mg0.5Sn0.5)O3 is the main crystalline phase, which is accompanied by a little Nd2Sn2O7 as the second phase. An apparent density of 6.87 g/cm3, a dielectric constant (? r ) of 19.48, a quality factor (Q × f) of 117,300 GHz, and a temperature coefficient of resonant frequency (τ f ) of ?61 ppm/°C were obtained when the Nd0.96Yb0.04(Mg0.5Sn0.5)O3 ceramics were sintered at 1,600 °C for 4 h. The temperature coefficient of resonant frequency (τ f ) increased from ?61 to ?3 ppm/°C as y increased from 0 to 0.6 when the (1 ? y)Nd0.96Yb0.04(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics were sintered at 1,600 °C for 4 h. 0.4Nd0.96Yb0.04(Mg0.5Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic that was sintered at 1,600 °C for 4 h had a τ f of ?3 ppm/°C.  相似文献   

4.
5.
xSm(Mg0.5Ti0.5)O3–(1 ? x)Ca0.8Sr0.2TiO3 (x = 0.50–0.95) ceramics are prepared by a conventional solid-state ceramic route. The microstructure and microwave dielectric properties are investigated as a function of the x-value and sintering temperature. The single phase solid solutions were obtained throughout the studied compositional range. The variation of bulk density and dielectric properties are related with the x-value. Increasing sintering temperature can effectively promote the densification and dielectric properties of xSm(Mg0.5Ti0.5)O3–(1 ? x)Ca0.8Sr0.2TiO3 ceramic system. With the content of Sm(Mg0.5Ti0.5)O3 increasing, the temperature coefficient of resonant frequency τ f value decreased, and a near-zero τ f could be obtained for the samples with x = 0.80. The optimal microwave dielectric properties with a dielectric constant ε r of 30.1, Q × f of 115,000 GHz (at 8.0 GHz), and τ f of 8.9 ppm/°C were obtained for 0.80Sm(Mg0.5Ti0.5)O3–0.20Ca0.8Sr0.2TiO3 sintered at 1,550 °C for 3 h, which showed high density and well-developed grain growth.  相似文献   

6.
7.
The (1 ? y)Nd(1?2x/3)Bax(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics were prepared by the conventional solid-state method. The X-ray diffraction patterns of the Nd(1?2x/3)Bax(Mg0.5Sn0.5)O3 ceramics revealed that Nd(1?2x/3)Bax(Mg0.5Sn0.5)O3 is the main crystalline phase, which is accompanied by a little Nd2Sn2O7 as the second phase. An apparent density of 6.89 g/cm3, a dielectric constant (ε r ) of 19.1, a quality factor (Q × f) of 212,000 GHz, and a temperature coefficient of resonant frequency (τ f ) of ?68 ppm/°C were obtained when the Nd2.94/3Ba0.03(Mg0.5Sn0.5)O3 ceramics were sintered at 1,550 °C for 4 h. The temperature coefficient of resonant frequency (τ f ) increased from ?68 to +55 ppm/°C as y increased from 0 to 0.7 when the (1 ? y)Nd2.94/3Ba0.03(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics were sintered at 1,600 °C for 4 h. 0.4Nd2.94/3Ba0.03(Mg0.5Sn0.5)O3–0.6 Ca0.8Sr0.2TiO3 ceramic that was sintered at 1,600 °C for 4 h had a τ f of ?7 ppm/°C.  相似文献   

8.
The microwave dielectric properties of ZnO–B2O3SiO2 (ZBS)-doped La(Mg0.5Sn0.5)O3 ceramics were investigated with a view to their application in microwave devices. ZBS-doped La(Mg0.5Sn0.5)O3 ceramics were prepared by the conventional solid-state method. The X-ray diffraction patterns of ZBS-doped La(Mg0.5Sn0.5)O3 ceramics exhibited no significant variation of phase with sintering temperature. By adding 2.0 wt% ZBS, a dielectric constant of 19.14, a quality factor (Q × f) of 35,800 GHz, and a temperature coefficient of resonant frequency τ f (?86 ppm/°C) were obtained when La(Mg0.5Sn0.5)O3 ceramics were sintered at 1,400 °C for 4 h.  相似文献   

9.
The CaO-Li2O-Sm2O3-TiO2 system has been reported having a high dielectric constant and good temperature stability. Based on the composition of CaO : Li2O : Sm2O3 : TiO2 : = 16 : 9 : 12 : 63, the modifications of CaO and Sm2O3 were investigated. In this paper, CaO has been partially substituted by BaO and Sm2O3 by Nd2O3. It was found that the introduction of BaO leads the modified ceramics to be mixtures of two phases. The fQ value has been significantly promoted, while the dielectric constant can remain higher than 90. To obtain a higher dielectric constant, Sm2O3 has been further partially replaced by Nd2O3. The sintering temperatures for the property change were also studied. The temperature coefficient of resonant frequency could be varied from a positive value to a negative value according to the different sintering temperatures. Excellent dielectric properties of r = 103, fQ = 7200 and f = + 2 ppm/°C were obtained with a composition of CaO : BaO : Li2O : Sm2O3 : Nd2O3 : TiO2 = 14 : 4 : 8 : 10 : 2 : 63 (molar ratio) and sintered at 1350°C for 3 h.  相似文献   

10.
New microwave dielectric ceramics in the SrLa4?xNdxTi5O17 (0  x  4) composition series were prepared through a solid state mixed oxide route. All the compositions formed highly dense (~95%) single phase ceramics upon sintering at 1500–1580 °C. The molar volume and theoretical density decreased due to the substitution of small (1.27 Å) Nd ions for large (1.36 Å) La ions. This decrease was associated with a decrease in the dielectric constant (?r), temperature coefficient of resonant frequency (τf) and quality factor (Qufo). An analysis of properties achieved in the present study indicated that ceramics exhibiting nearly zero τf corresponding to ?r  54 could be fabricated in the SrLa4?xNdxTi5O17 composition series at x  1.6; however, further work is required to improve Qufo (~6000 GHz) for possible practical applications.  相似文献   

11.
Lead-free 0.98(Na0.5K0.5)NbO3–0.02Ba(ZrxTi(1?x))O3 (0.98NKN–0.02BZT) ceramics with Zr contents were fabricated by a conventional mixed-oxide method. The results indicate that the Zr/Ti ratio significantly influences the structural, piezoelectric, dielectric, and ferroelectric properties of 0.98NKN–0.02BZT ceramics. For the 0.98NKN–0.02BZT (x = 0) ceramics sintered at 1090 °C, the bulk density increased as the Zr contents decreased and showed a maximum value at x = 0. The Curie temperature of the 0.98NKN–0.02BZT ceramics slightly decreased as the Zr contents increased. The dielectric constant, piezoelectric constant, and electromechanical coupling factor of samples were maximized at x = 0, which might be due to the increase in density. A high d33 = 194 pC/N, kp = 38% were obtained for the 0.98NKN–0.02BZT ceramics sintered at 1090 °C for 4 h.  相似文献   

12.
(0.725 ? x)BiFeO3–0.275BaTiO3–xBi(Mg0.5Zr0.5)O3 + 1 mol% MnO2 lead-free ceramics (x = 0–0.08) were synthesized by a conventional solid state reaction method and the effects of Bi(Mg0.5Zr0.5)O3 on phase transition, piezoelectric and ferroelectric properties of the ceramics were investigated. After the addition of Bi(Mg0.5Zr0.5)O3, the crystal structure of the ceramics is transformed from rhombohedral to tetragonal phase and the morphotropic phase boundary (MPB) of rhombohedral and tetragonal phase is formed at x = 0.01. The grain size of the ceramics increases with x increasing from 0 to 0.02 and then decreases with x further increasing. The dielectric peak of the ceramics becomes diffusive with x increasing after the addition of Bi(Mg0.5Zr0.5)O3. The ceramics with x = 0–0.08 exhibit much better electric insulation with the resistivity of 1.0 × 109–5.0 × 109 Ω·cm than pure BiFeO3 ceramic with the resistivity of ~5 × 107 Ω·cm. Due to the formation of the MPB, the ceramics with x = 0–0.02 possess good densification with the relative densities ρ r of 94.9–96.3 %, strong piezoelectricity with the d 33 of 129–135 pC/N and very high Curie temperature with the T C of 559–610 °C.  相似文献   

13.
(1 − x)Bi0.5Na0.5TiO3xBi0.5Li0.5TiO3 lead-free ceramics have been prepared by a conventional solid-state reaction method, and their piezoelectric and dielectric properties have been studied. X-ray diffraction studies reveal that Li+ diffuses into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a pure perovskite structure. The addition of Bi0.5Li0.5TiO3 effectively lowers the sintering temperature of the ceramics and greatly assists in the densification of the ceramics. The ceramic with x = 0.075 possesses the optimum piezoelectric properties: piezoelectric coefficient d 33 = 121 pC/N and planar electromechanical coupling factor k P = 18.3%. After the partial substitution of Li+ for Na+ in the A-sites of Bi0.5Na0.5TiO3, the ceramics exhibit more relaxor characteristic, which is probably resulted from the cation disordering in the 12-fold coordination sites. The depolarization temperature T d shifts to low temperature with the substitution level x of Li+ for Na+ increasing.  相似文献   

14.
Effects of Li2O–B2O3 on the sintering behavior and the microwave dielectric properties of (Zn0.8Mg0.2)2SiO4–TiO2 ceramics were investigated as a function of Li2O–B2O3 content and sintering temperature. The Li2O–B2O3 combined additives successfully reduced the sintering temperature of (Zn0.8Mg0.2)2SiO4–TiO2 ceramics from 1,250 °C to 900 °C. With the increase of Li2O–B2O3 content, the TiO2 phase decreased and the unknown second phase increased, which led to the dielectric constant (ε r ) and the maximum Q × f value decrease, and the temperature coefficient of resonant frequency (τ f ) shift to a negative value. The specimens with 3 wt%Li2O–B2O3 sintered at 900 °C for 2 h showed ε r of 8.84, Q × f value of 15,500 GHz, and τ f of 17.8 ppm/°C. And the material was compatible with Ag electrodes, which made it a promising ceramic for low temperature co-fired ceramics technology application.  相似文献   

15.
16.
SrO–B2O3–SiO2 (SBS) glass powders were prepared and employed as sintering aids to reduce the sintering temperature of Ba(Fe0.5Nb0.5)O3 (BFN) ceramics. The effects of glass content on the dielectric properties and breakdown strength of BFN ceramics have been investigated. The volume density characterization results of (1 ? x) BFN ? x SBS ceramics indicate that the sintering temperature of BFN ceramics decreased by 200–350 °C with SBS glass addition (when x = 0, 0.01, 0.03 and 0.05). The XRD patterns show BFN ceramics indicate cubic crystal structure and without the formation of a secondary phase. The dielectric constant and dielectric loss decreased gradually with increasing glass content, and the dielectric loss decreased by one order of magnitude with SBS glass addition (when x = 0.05). The breakdown strength of (1 ? x) BFN ? x SBS ceramics increase with increasing glass content, in which is about 33.90 kV/cm with SBS glass addition (when x = 0.05). These improvements in the dielectric characteristics of BFN ceramics have great scientific significance for their applications.  相似文献   

17.
18.
Solid solutions of (Na0.5K0.5)NbO3 (NKN) and Li(Ta0.5Nb0.5)O3 (LTN) were investigated as a potential candidate of lead-free piezoelectric ceramics. It was found that the Curie temperature of solid solutions increases slightly with increasing the LTN content and simultaneously the polymorphic phase transition temperature linearly decrease till below room temperature. An orthorhombic to tetragonal phase transformation at room temperature, or a morphotropic phase boundary, in NKN is induced by ~7 at% LTN addition, where the best dielectric, piezoelectric and electromechanical properties are achieved. The 0.94NKN–0.07LTN ceramics possess a dielectric constant of 765, a loss tangent of 0.04 at 1 kHz, a piezoelectric constant d33 of 253 pC/N and an electromechanical coupling factor kp of 48%.  相似文献   

19.
Microwave dielectric ceramics of Ba3Ti4?x(Mg1/3Nb2/3)xNb4O21 solid solutions (BTMNN-x, x?=?0–4) were prepared via the conventional solid-state reaction method. The X-ray powder diffraction analysis revealed that the BTMNN-x ceramics formed complete solid solutions with hexagonal structure. The dielectric constant (εr) and the temperature coefficient of the resonant frequency (τf) of BTMNN-x ceramics decreased with the increase of x, while the quality factor (Q?×?f) enhanced with increasing the substitution content. In addition, a small amount of BaCu(B2O5) (BCB) additive can effectively lower the sintering temperature of BTMNN ceramics. The 1.5?wt% BCB doped BTMNN-2 ceramics can be sintered at 950?°C and have good microwave dielectric properties of εr?=?50, Q?×?f?=?10,500?GHz and τf?=?18?ppm/°C, which makes it possible to be a promising candidate for mid-permittivity low temperature co-fired ceramic materials.  相似文献   

20.
Lead-free 0.5Ba(ZrxTi1?x)O3–0.5(Ba0.75Ca0.25)TiO3 (x = 0.25, 0.30, 0.35, 0.40) ceramics have been synthesized by a conventional solid state sintering method. The room temperature ferroelectric and electrostrictive properties of these ceramics were studied. Based on the measured properties, these ceramics showed a typical relaxor behavior. The Curie temperature of BZT–BCT ceramics decreases with increasing the Zr content. The largest electrostrictive strain and electrostrictive coefficient are founded in BZT–BCT ceramic with x = 0.25, the value is 0.16 % and 0.079 m4 C?2, respectively. The polarization, electrostrictive strain and electrostrictive coefficient (Q 11) decrease with increase in Zr concentration. For samples with low Curie temperature, which have large room temperature dielectric constant (ε), electrostrictive coefficient increases (Q 11) is smaller. Because doping can disrupt the long range cation order, and electrostrictive (Q 11) coefficient increases with cation order from disordered, through partially-ordered, simple relaxor and then ordered perovskites, ferroelectrics with a disordered structure have a huge permittivity, but a small electrostrictive coefficient (Q 11).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号