首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that the promise problem of distinguishing n-bit strings of relative Hamming weight \({1/2 + \Omega(1/{\rm lg}^{d-1} n)}\) from strings of weight \({1/2 - \Omega(1/{\rm \lg}^{d - 1} n)}\) can be solved by explicit, randomized (unbounded fan-in) poly(n)-size depth-d circuits with error \({\leq 1/3}\) , but cannot be solved by deterministic poly(n)-size depth-(d+1) circuits, for every \({d \geq 2}\) ; and the depth of both is tight. Our bounds match Ajtai’s simulation of randomized depth-d circuits by deterministic depth-(d + 2) circuits (Ann. Pure Appl. Logic; ’83) and provide an example where randomization buys resources. To rule out deterministic circuits, we combine Håstad’s switching lemma with an earlier depth-3 lower bound by the author (Computational Complexity 2009). To exhibit randomized circuits, we combine recent analyses by Amano (ICALP ’09) and Brody and Verbin (FOCS ’10) with derandomization. To make these circuits explicit, we construct a new, simple pseudorandom generator that fools tests \({A_1 \times A_2 \times \cdots \times A_{{\rm lg}{n}}}\) for \({A_i \subseteq [n], |A_{i}| = n/2}\) with error 1/n and seed length O(lg n), improving on the seed length \({\Omega({\rm lg}\, n\, {\rm lg}\, {\rm lg}\, n)}\) of previous constructions.  相似文献   

2.
Given a DNF formula f on n variables, the two natural size measures are the number of terms or size s(f) and the maximum width of a term w(f). It is folklore that small DNF formulas can be made narrow: if a formula has m terms, it can be ${\epsilon}$ -approximated by a formula with width ${{\rm log}(m/{\epsilon})}$ . We prove a converse, showing that narrow formulas can be sparsified. More precisely, any width w DNF irrespective of its size can be ${\epsilon}$ -approximated by a width w DNF with at most ${(w\, {\rm log}(1/{\epsilon}))^{O(w)}}$ terms. We combine our sparsification result with the work of Luby & Velickovic (1991, Algorithmica 16(4/5):415–433, 1996) to give a faster deterministic algorithm for approximately counting the number of satisfying solutions to a DNF. Given a formula on n variables with poly(n) terms, we give a deterministic ${n^{\tilde{O}({\rm log}\, {\rm log} (n))}}$ time algorithm that computes an additive ${\epsilon}$ approximation to the fraction of satisfying assignments of f for ${\epsilon = 1/{\rm poly}({\rm log}\, n)}$ . The previous best result due to Luby and Velickovic from nearly two decades ago had a run time of ${n^{{\rm exp}(O(\sqrt{{\rm log}\, {\rm log} n}))}}$ (Luby & Velickovic 1991, in Algorithmica 16(4/5):415–433, 1996).  相似文献   

3.
We describe an extension to our quantifier-free computational logic to provide the expressive power and convenience of bounded quantifiers and partial functions. By quantifier we mean a formal construct which introduces a bound or indicial variable whose scope is some subexpression of the quantifier expression. A familiar quantifier is the Σ operator which sums the values of an expression over some range of values on the bound variable. Our method is to represent expressions of the logic as objects in the logic, to define an interpreter for such expressions as a function in the logic, and then define quantifiers as ‘mapping functions’. The novelty of our approach lies in the formalization of the interpreter and its interaction with the underlying logic. Our method has several advantages over other formal systems that provide quantifiers and partial functions in a logical setting. The most important advantage is that proofs not involving quantification or partial recursive functions are not complicated by such notions as ‘capturing’, ‘bottom’, or ‘continuity’. Naturally enough, our formalization of the partial functions is nonconstructive. The theorem prover for the logic has been modified to support these new features. We describe the modifications. The system has proved many theorems that could not previously be stated in our logic. Among them are:
  • ? classic quantifier manipulation theorems, such as $$\sum\limits_{{\text{l}} = 0}^{\text{n}} {{\text{g}}({\text{l}}) + {\text{h(l) = }}} \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{g}}({\text{l}})} + \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{h(l)}};} $$
  • ? elementary theorems involving quantifiers, such as the Binomial Theorem: $$(a + b)^{\text{n}} = \sum\limits_{{\text{l = }}0}^{\text{n}} {\left( {_{\text{i}}^{\text{n}} } \right)} \user2{ }{\text{a}}^{\text{l}} {\text{b}}^{{\text{n - l}}} ;$$
  • ? elementary theorems about ‘mapping functions’ such as: $$(FOLDR\user2{ }'PLUS\user2{ O L) = }\sum\limits_{{\text{i}} \in {\text{L}}}^{} {{\text{i}};} $$
  • ? termination properties of many partial recursive functions such as the fact that an application of the partial function described by $$\begin{gathered} (LEN X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F ({\rm E}QUAL X NIL) \hfill \\ {\rm O} \hfill \\ (ADD1 (LEN (CDR X)))) \hfill \\ \end{gathered} $$ terminates if and only if the argument ends in NIL;
  • ? theorems about functions satisfying unusual recurrence equations such as the 91-function and the following list reverse function: $$\begin{gathered} (RV X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F (AND (LISTP X) (LISTP (CDR X))) \hfill \\ (CONS (CAR (RV (CDR X))) \hfill \\ (RV (CONS (CAR X) \hfill \\ (RV (CDR (RV (CDR X))))))) \hfill \\ X). \hfill \\ \end{gathered} $$
  •   相似文献   

    4.
    The paper deals with the approximation of integrals of the type
    $$\begin{aligned} I(f;{\mathbf {t}})=\int _{{\mathrm {D}}} f({\mathbf {x}}) {\mathbf {K}}({\mathbf {x}},{\mathbf {t}}) {\mathbf {w}}({\mathbf {x}}) d{\mathbf {x}},\quad \quad {\mathbf {x}}=(x_1,x_2),\quad {\mathbf {t}}\in \mathrm {T}\subseteq \mathbb {R}^p, \ p\in \{1,2\} \end{aligned}$$
    where \({\mathrm {D}}=[-\,1,1]^2\), f is a function defined on \({\mathrm {D}}\) with possible algebraic singularities on \(\partial {\mathrm {D}}\), \({\mathbf {w}}\) is the product of two Jacobi weight functions, and the kernel \({\mathbf {K}}\) can be of different kinds. We propose two cubature rules determining conditions under which the rules are stable and convergent. Along the paper we diffusely treat the numerical approximation for kernels which can be nearly singular and/or highly oscillating, by using a bivariate dilation technique. Some numerical examples which confirm the theoretical estimates are also proposed.
      相似文献   

    5.
    To model association fields that underly perceptional organization (gestalt) in psychophysics we consider the problem P curve of minimizing $\int _{0}^{\ell} \sqrt{\xi^{2} +\kappa^{2}(s)} {\rm d}s $ for a planar curve having fixed initial and final positions and directions. Here κ(s) is the curvature of the curve with free total length ?. This problem comes from a model of geometry of vision due to Petitot (in J. Physiol. Paris 97:265–309, 2003; Math. Inf. Sci. Humaines 145:5–101, 1999), and Citti & Sarti (in J. Math. Imaging Vis. 24(3):307–326, 2006). In previous work we proved that the range $\mathcal{R} \subset\mathrm{SE}(2)$ of the exponential map of the underlying geometric problem formulated on SE(2) consists of precisely those end-conditions (x fin,y fin,θ fin) that can be connected by a globally minimizing geodesic starting at the origin (x in,y in,θ in)=(0,0,0). From the applied imaging point of view it is relevant to analyze the sub-Riemannian geodesics and $\mathcal{R}$ in detail. In this article we
    • show that $\mathcal{R}$ is contained in half space x≥0 and (0,y fin)≠(0,0) is reached with angle π,
    • show that the boundary $\partial\mathcal{R}$ consists of endpoints of minimizers either starting or ending in a cusp,
    • analyze and plot the cones of reachable angles θ fin per spatial endpoint (x fin,y fin),
    • relate the endings of association fields to $\partial\mathcal {R}$ and compute the length towards a cusp,
    • analyze the exponential map both with the common arc-length parametrization t in the sub-Riemannian manifold $(\mathrm{SE}(2),\mathrm{Ker}(-\sin\theta{\rm d}x +\cos\theta {\rm d}y), \mathcal{G}_{\xi}:=\xi^{2}(\cos\theta{\rm d}x+ \sin\theta {\rm d}y) \otimes(\cos\theta{\rm d}x+ \sin\theta{\rm d}y) + {\rm d}\theta \otimes{\rm d}\theta)$ and with spatial arc-length parametrization s in the plane $\mathbb{R}^{2}$ . Surprisingly, s-parametrization simplifies the exponential map, the curvature formulas, the cusp-surface, and the boundary value problem,
    • present a novel efficient algorithm solving the boundary value problem,
    • show that sub-Riemannian geodesics solve Petitot’s circle bundle model (cf. Petitot in J. Physiol. Paris 97:265–309, [2003]),
    • show a clear similarity with association field lines and sub-Riemannian geodesics.
      相似文献   

    6.
    This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints:
    $$\begin{aligned} \text {minimize} ~~&f_1(\mathbf{x}_1) + \cdots + f_N(\mathbf{x}_N)\\ \text {subject to}~~&A_1 \mathbf{x}_1 ~+ \cdots + A_N\mathbf{x}_N =c,\\&\mathbf{x}_1\in {\mathcal {X}}_1,~\ldots , ~\mathbf{x}_N\in {\mathcal {X}}_N, \end{aligned}$$
    where \(N \ge 2\), \(f_i\) are convex functions, \(A_i\) are matrices, and \({\mathcal {X}}_i\) are feasible sets for variable \(\mathbf{x}_i\). Our algorithm extends the alternating direction method of multipliers (ADMM) and decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This paper shows that the classic ADMM can be extended to the N-block Jacobi fashion and preserve convergence in the following two cases: (i) matrices \(A_i\) are mutually near-orthogonal and have full column-rank, or (ii) proximal terms are added to the N subproblems (but without any assumption on matrices \(A_i\)). In the latter case, certain proximal terms can let the subproblem be solved in more flexible and efficient ways. We show that \(\Vert {\mathbf {x}}^{k+1} - {\mathbf {x}}^k\Vert _M^2\) converges at a rate of o(1 / k) where M is a symmetric positive semi-definte matrix. Since the parameters used in the convergence analysis are conservative, we introduce a strategy for automatically tuning the parameters to substantially accelerate our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon EC2 and tested it on basis pursuit problems with >300 GB of distributed data. This is the first time that successfully solving a compressive sensing problem of such a large scale is reported.
      相似文献   

    7.
    The discrete logarithm problem modulo a composite??abbreviate it as DLPC??is the following: given a (possibly) composite integer n??? 1 and elements ${a, b \in \mathbb{Z}_n^*}$ , determine an ${x \in \mathbb{N}}$ satisfying a x ?=?b if one exists. The question whether integer factoring can be reduced in deterministic polynomial time to the DLPC remains open. In this paper we consider the problem ${{\rm DLPC}_\varepsilon}$ obtained by adding in the DLPC the constraint ${x\le (1-\varepsilon)n}$ , where ${\varepsilon}$ is an arbitrary fixed number, ${0 < \varepsilon\le\frac{1}{2}}$ . We prove that factoring n reduces in deterministic subexponential time to the ${{\rm DLPC}_\varepsilon}$ with ${O_\varepsilon((\ln n)^2)}$ queries for moduli less or equal to n.  相似文献   

    8.
    This article is about defining a suitable logic for expressing classical game theoretical notions. We define an extension of alternating-time temporal logic (ATL) that enables us to express various rationality assumptions of intelligent agents. Our proposal, the logic ATLP (ATL with plausibility) allows us to specify sets of rational strategy profiles in the object language, and reason about agents’ play if only these strategy profiles were allowed. For example, we may assume the agents to play only Nash equilibria, Pareto-optimal profiles or undominated strategies, and ask about the resulting behaviour (and outcomes) under such an assumption. The logic also gives rise to generalized versions of classical solution concepts through characterizing patterns of payoffs by suitably parameterized formulae of ATLP. We investigate the complexity of model checking ATLP for several classes of formulae: It ranges from $\Delta_{\mathbf{3}}^{\mathbf{P}}$ to PSPACE in the general case and from $\Delta_{\mathbf{3}}^{\mathbf{P}}$ to $\Delta_{\mathbf{4}}^{\mathbf{P}}$ for the most interesting subclasses, and roughly corresponds to solving extensive games with imperfect information.  相似文献   

    9.
    This paper is intended as an attempt to describe logical consequence in branching time logics. We study temporal branching time logics $\mathcal {BTL}^{\mathrm {U,S}}_{\mathrm {N},\mathrm {N}^{-1}}(\mathcal {Z})_{\alpha }$ which use the standard operations Until and Next and dual operations Since and Previous (LTL, as standard, uses only Until and Next). Temporal logics $\mathcal {BTL}^{\mathrm {U,S}}_{\mathrm {N},\mathrm {N}^{-1}}(\mathcal {Z})_{\alpha }$ are generated by semantics based on Kripke/Hinttikka structures with linear frames of integer numbers $\mathcal {Z}$ with a single node (glued zeros). For $\mathcal {BTL}^{\mathrm {U,S}}_{\mathrm {N},\mathrm {N}^{-1}}(\mathcal {Z})_{\alpha }$ , the permissible branching of the node is limited by α (where 1≤αω). We prove that any logic $\mathcal {BTL}^{\mathrm {U,S}}_{\mathrm {N},\mathrm {N}^{-1}}(\mathcal {Z})_{\alpha }$ is decidable w.r.t. admissible consecutions (inference rules), i.e. we find an algorithm recognizing consecutions admissible in $\mathcal {BTL}^{\mathrm {U,S}}_{\mathrm {N},\mathrm {N}^{-1}}(\mathcal {Z})_{\alpha }$ . As a consequence, it implies that $\mathcal {BTL}^{\mathrm {U,S}}_{\mathrm {N},\mathrm {N}^{-1}}(\mathcal {Z})_{\alpha }$ itself is decidable and solves the satisfiability problem.  相似文献   

    10.
    We prove two main results on how arbitrary linear threshold functions ${f(x) = {\rm sign}(w \cdot x - \theta)}$ over the n-dimensional Boolean hypercube can be approximated by simple threshold functions. Our first result shows that every n-variable threshold function f is ${\epsilon}$ -close to a threshold function depending only on ${{\rm Inf}(f)^2 \cdot {\rm poly}(1/\epsilon)}$ many variables, where ${{\rm Inf}(f)}$ denotes the total influence or average sensitivity of f. This is an exponential sharpening of Friedgut’s well-known theorem (Friedgut in Combinatorica 18(1):474–483, 1998), which states that every Boolean function f is ${\epsilon}$ -close to a function depending only on ${2^{O({\rm Inf}(f)/\epsilon)}}$ many variables, for the case of threshold functions. We complement this upper bound by showing that ${\Omega({\rm Inf}(f)^2 + 1/\epsilon^2)}$ many variables are required for ${\epsilon}$ -approximating threshold functions. Our second result is a proof that every n-variable threshold function is ${\epsilon}$ -close to a threshold function with integer weights at most ${{\rm poly}(n) \cdot 2^{\tilde{O}(1/\epsilon^{2/3})}.}$ This is an improvement, in the dependence on the error parameter ${\epsilon}$ , on an earlier result of Servedio (Comput Complex 16(2):180–209, 2007) which gave a ${{\rm poly}(n) \cdot 2^{\tilde{O}(1/\epsilon^{2})}}$ bound. Our improvement is obtained via a new proof technique that uses strong anti-concentration bounds from probability theory. The new technique also gives a simple and modular proof of the original result of Servedio (Comput Complex 16(2):180–209, 2007) and extends to give low-weight approximators for threshold functions under a range of probability distributions other than the uniform distribution.  相似文献   

    11.
    12.
    We relate the exponential complexities 2 s(k)n of $\textsc {$k$-sat}$ and the exponential complexity $2^{s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))n}$ of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ (the problem of evaluating quantified formulas of the form $\forall\vec{x} \exists\vec{y} \textsc {F}(\vec {x},\vec{y})$ where F is a 3-cnf in $\vec{x}$ variables and $\vec{y}$ variables) and show that s(∞) (the limit of s(k) as k→∞) is at most $s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))$ . Therefore, if we assume the Strong Exponential-Time Hypothesis, then there is no algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ running in time 2 cn with c<1. On the other hand, a nontrivial exponential-time algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ would provide a $\textsc {$k$-sat}$ solver with better exponent than all current algorithms for sufficiently large k. We also show several syntactic restrictions of the evaluation problem $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ have nontrivial algorithms, and provide strong evidence that the hardest cases of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ must have a mixture of clauses of two types: one universally quantified literal and two existentially quantified literals, or only existentially quantified literals. Moreover, the hardest cases must have at least n?o(n) universally quantified variables, and hence only o(n) existentially quantified variables. Our proofs involve the construction of efficient minimally unsatisfiable $\textsc {$k$-cnf}$ s and the application of the Sparsification lemma.  相似文献   

    13.
    We study certain properties of Rényi entropy functionals $H_\alpha \left( \mathcal{P} \right)$ on the space of probability distributions over ?+. Primarily, continuity and convergence issues are addressed. Some properties are shown to be parallel to those known in the finite alphabet case, while others illustrate a quite different behavior of the Rényi entropy in the infinite case. In particular, it is shown that for any distribution $\mathcal{P}$ and any r ∈ [0,∞] there exists a sequence of distributions $\mathcal{P}_n$ converging to $\mathcal{P}$ with respect to the total variation distance and such that $\mathop {\lim }\limits_{n \to \infty } \mathop {\lim }\limits_{\alpha \to 1 + } H_\alpha \left( {\mathcal{P}_n } \right) = \mathop {\lim }\limits_{\alpha \to 1 + } \mathop {\lim }\limits_{n \to \infty } H_\alpha \left( {\mathcal{P}_n } \right) + r$ .  相似文献   

    14.
    15.
    The random variable \(\left( {\prod {_{i = 1}^n {{X_i } \mathord{\left/ {\vphantom {{X_i } {X_{i + n} }}} \right. \kern-0em} {X_{i + n} }}} } \right)^{{1 \mathord{\left/ {\vphantom {1 {\sqrt {2n} }}} \right. \kern-0em} {\sqrt {2n} }}}\) is used to generate standard log-normal variables Λ(0, 1), where theX i are independent uniform variables on [0, 1].  相似文献   

    16.
    Recently, we derived some new numerical quadrature formulas of trapezoidal rule type for the integrals \(I^{(1)}[g]=\int ^b_a \frac{g(x)}{x-t}\,dx\) and \(I^{(2)}[g]=\int ^b_a \frac{g(x)}{(x-t)^2}\,dx\) . These integrals are not defined in the regular sense; \(I^{(1)}[g]\) is defined in the sense of Cauchy Principal Value while \(I^{(2)}[g]\) is defined in the sense of Hadamard Finite Part. With \(h=(b-a)/n, \,n=1,2,\ldots \) , and \(t=a+kh\) for some \(k\in \{1,\ldots ,n-1\}, \,t\) being fixed, the numerical quadrature formulas \({Q}^{(1)}_n[g]\) for \(I^{(1)}[g]\) and \(Q^{(2)}_n[g]\) for \(I^{(2)}[g]\) are $$\begin{aligned} {Q}^{(1)}_n[g]=h\sum ^n_{j=1}f(a+jh-h/2),\quad f(x)=\frac{g(x)}{x-t}, \end{aligned}$$ and $$\begin{aligned} Q^{(2)}_n[g]=h\sum ^n_{j=1}f(a+jh-h/2)-\pi ^2g(t)h^{-1},\quad f(x)=\frac{g(x)}{(x-t)^2}. \end{aligned}$$ We provided a complete analysis of the errors in these formulas under the assumption that \(g\in C^\infty [a,b]\) . We actually show that $$\begin{aligned} I^{(k)}[g]-{Q}^{(k)}_n[g]\sim \sum ^\infty _{i=1} c^{(k)}_ih^{2i}\quad \text {as}\,n \rightarrow \infty , \end{aligned}$$ the constants \(c^{(k)}_i\) being independent of \(h\) . In this work, we apply the Richardson extrapolation to \({Q}^{(k)}_n[g]\) to obtain approximations of very high accuracy to \(I^{(k)}[g]\) . We also give a thorough analysis of convergence and numerical stability (in finite-precision arithmetic) for them. In our study of stability, we show that errors committed when computing the function \(g(x)\) , which form the main source of errors in the rest of the computation, propagate in a relatively mild fashion into the extrapolation table, and we quantify their rate of propagation. We confirm our conclusions via numerical examples.  相似文献   

    17.
    Consider the controlled system dx/dt = Ax + α(t)Bu where the pair (A, B) is stabilizable and α(t) takes values in [0, 1] and is persistently exciting, i.e., there exist two positive constants μ, T such that, for every t ≥ 0, ${\int_t^{t+T}\alpha(s){\rm d}s \geq \mu}Consider the controlled system dx/dt = Ax + α(t)Bu where the pair (A, B) is stabilizable and α(t) takes values in [0, 1] and is persistently exciting, i.e., there exist two positive constants μ, T such that, for every t ≥ 0, . In particular, when α(t) becomes zero the system dynamics switches to an uncontrollable system. In this paper, we address the following question: is it possible to find a linear time-invariant state-feedback u = Kx, with K only depending on (A, B) and possibly on μ, T, which globally asymptotically stabilizes the system? We give a positive answer to this question for two cases: when A is neutrally stable and when the system is the double integrator. Notation  A continuous function is of class , if it is strictly increasing and is of class if it is continuous, non-increasing and tends to zero as its argument tends to infinity. A function is said to be a class -function if, for any t ≥ 0, and for any s ≥ 0. We use |·| for the Euclidean norm of vectors and the induced L 2-norm of matrices.  相似文献   

    18.
    The main purpose of the paper is to discuss splitting methods for parabolic equations via the method of lines. Firstly, we deal with the formulation of these methods for autonomous semi-discrete equations $$\frac{{dy}}{{dt}} = f(y),{\rm E}f{\rm E}non - linear,$$ f satisfying a linear splitting relation \(f(y) = \sum\limits_{i = 1}^k {f_i (y)} \) . A class of one-step integration formulas is defined, which is shown to contain all known splitting methods, provided the functionsf i are defined appropriately. For a number of methods stability results are given. Secondly, attention is paid to alternating direction methods for problems with an arbitrary non-linear coupling between space derivatives.  相似文献   

    19.
    We present a linear numerical scheme for a model of epitaxial thin film growth without slope selection. The PDE, which is a nonlinear, fourth-order parabolic equation, is the L 2 gradient flow of the energy $\int_{\Omega}( - \frac{1}{2} \ln(1 + |\nabla\phi|^{2} ) + \frac{\epsilon^{2}}{2}|\Delta\phi(\mathbf{x})|^{2})\,\mathrm{d}\mathbf{x}$ . The idea of convex-concave decomposition of the energy functional is applied, which results in a numerical scheme that is unconditionally energy stable, i.e., energy dissipative. The particular decomposition used here places the nonlinear term in the concave part of the energy, in contrast to a previous convexity splitting scheme. As a result, the numerical scheme is fully linear at each time step and unconditionally solvable. Collocation Fourier spectral differentiation is used in the spatial discretization, and the unconditional energy stability is established in the fully discrete setting using a detailed energy estimate. We present numerical simulation results for a sequence of ? values ranging from 0.02 to?0.1. In particular, the long time simulations show the ?log(t) decay law for the energy and the t 1/2 growth law for the surface roughness, in agreement with theoretical analysis and experimental/numerical observations in earlier works.  相似文献   

    20.
    In this paper, we consider the $(\in_{\gamma},\in_{\gamma} \vee \; \hbox{q}_{\delta})$ -fuzzy and $(\overline{\in}_{\gamma},\overline{\in}_{\gamma} \vee \; \overline{\hbox{q}}_{\delta})$ -fuzzy subnear-rings (ideals) of a near-ring. Some new characterizations are also given. In particular, we introduce the concepts of (strong) prime $(\in_{\gamma},\in_{\gamma} \vee \; \hbox{q}_{\delta})$ -fuzzy ideals of near-rings and discuss the relationship between strong prime $(\in_{\gamma},\in_{\gamma} \vee \; \hbox{q}_{\delta})$ -fuzzy ideals and prime $(\in_{\gamma},\in_{\gamma} \vee \; \hbox{q}_{\delta})$ -fuzzy ideals of near-rings.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号