共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
氮化硅(Si_3N_4)薄膜具有化学稳定性高、电阻率高、绝缘性好、光学性能良好(其折射率在2.0左右)等特性。同时氮化硅膜是一种很好的耐磨材料,其铅笔硬度理论上可以达到9H以上,通过在其它的镀膜产品上加镀一层氮化硅膜,可有效改善原有镀膜产品的耐磨性,避免膜层出现膜面划伤而造成的外观不良。本文主要研究采用中频磁控反应溅射制备氮化硅薄膜,氮化硅薄膜的耐磨性能取决于镀膜过程中的各种工艺参数,包括:N_2/Ar比、沉积温度、溅射功率、膜层厚度2等。通过对不同工艺条件下镀制的氮化硅薄膜的耐磨性及膜层结构进行对比,筛选出具有优良耐磨性能的氮化硅薄膜的工艺参数。 相似文献
3.
4.
5.
6.
采用溶胶-凝胶法制备纳米晶镍锌钴铁氧体/二氧化硅复合粉体,并将该粉体制成靶材.采用磁控溅射法在单晶硅基底和玻璃基底上沉积镍锌钴铁氧体复合薄膜,并对其进行磁性能研究.研究结果表明:镍锌钴铁氧体/二氧化硅复合薄膜具有较好的软磁性能;在相同的溅射条件下,两种基片上的薄膜的矫顽力都较小,但硅基片上薄膜的饱和磁化强度较玻璃基片上的大,软磁性能更好;经后退火处理,薄膜的饱和磁化强度得到明显地提高,软磁性能得到改善. 相似文献
7.
《硅酸盐通报》2015,(Z1)
本文采用单周期和多周期磁控溅射ZnS-SnS-Cu制备CZST薄膜。通过X射线衍射仪(XRD)、拉曼光谱仪(Raman)、高倍光学显微镜、扫描电子显微镜(SEM)、能谱仪(EDS)和热探针对所制备的CZTS薄膜的晶体结构、拉曼位移、表面形貌、化学组分和导电类型进行研究分析。分析结果表明所制备CZTS薄膜的粘附性和结晶质量随着溅射周期的增加得到很大的改善所制备的CZTS无Cu_(2-x)S等其它二次相,且薄膜表面光滑、晶粒均匀致密、无孔洞。所制备的CZTS薄膜在化学组分是贫铜富锌(Cu/Zn+Sn≈0.88,Zn/Sn≈1.09),符合高效率太阳能电池吸收层的要求。 相似文献
8.
9.
10.
磁控溅射法制备碳化钨薄膜的研究及应用进展 总被引:1,自引:0,他引:1
综述了国内外磁控溅射法制备碳化钨薄膜技术的研究动态.文章认为,磁控溅射碳化钨薄膜今后研究的方向将集中在低温、超硬膜、耐蚀膜、催化性膜等方面. 相似文献
11.
《硅酸盐通报》2015,(Z1)
采用磁控溅射法,先在镀钼的钠钙玻璃衬底上共溅射Cu、Sn金属层后,然后在顶部溅射一层Zn S,制备出Cu_2ZnSnS_4(CZTS)薄膜的预制层。对预制层进行低温合金,然后以硫粉作为硫源在石英管中进行高温硫化,得到表面平整但晶粒较小的CZTS薄膜。通过X射线衍射仪(XRD)、扫描电镜(SEM)及能谱仪(EDS)分别对薄膜的晶体结构、表面形貌和薄膜组分进行分析表征;并用拉曼光谱表征了CZTS相的纯度。最后用所得到的CZTS薄膜制备了太阳电池,其开路电压:Voc=442 m V,短路电流密度:Jsc=5.08 m A/cm~2,光电转换效率达到0.62%。 相似文献
12.
采用磁控溅射技术在ITO基底上制备出了Cu薄膜,考察了溅射压强和溅射功率对Cu薄膜微观结构的影响,采用电子扫描显微镜、X射线衍射仪对薄膜的形貌和结构进行了表征,并采用电化学腐蚀实验研究了薄膜的耐蚀性能。结果表明:随着压强从3 Pa增加到8 Pa,薄膜的晶粒尺寸先增加后减小,结晶度先减弱后增强,压强的增大有利于表面粒子的扩散,使薄膜更加平整,但对表面粗糙度影响不大,压强为5 Pa时,晶粒尺寸较大。溅射功率对薄膜的结晶度和晶粒尺寸影响较大,随着功率从200 W增加到400 W,薄膜的结晶度逐渐增加,功率增加到400 W时,晶粒尺寸明显增加,此时薄膜表面粗糙度较大。晶粒尺寸的增加有利于增强薄膜的耐蚀性能,表面粗糙度的增加使薄膜耐蚀性减弱。在压强为5 Pa,功率为200 W和400 W时,所得薄膜耐蚀性较好,铜薄膜的耐蚀性由薄膜的晶粒尺寸、表面粗糙度等因素共同决定,二者对其耐蚀性影响呈现出一种竞争关系。 相似文献
13.
14.
15.
在SiO2/Si基片上采用直流对靶溅射技术制备出Pt/Ti底电极;应用射频磁控溅射方法,利用快速热处理(RTA)工艺,制备出了具有良好铁电性能的Pb(Zr0.52Ti0.48)O3铁电薄膜.将样品进行10min快速热退火处理,退火温度700℃.测试分析表明:薄膜厚度比较均匀、表面基本平整、没有裂纹和孔洞、致密性好、薄膜样品的矫顽场强(Ec)为28.6kV/cm,剩余极化强度(Pr)为18.7μC/cm2,自发极化强度(Ps)为37.5μC/cm2,是制备铁电薄膜存储器的优选材料. 相似文献
16.
17.
采用射频磁控溅射技术在柔性基体PI(聚酰亚胺)上制备了纳米CeO2-TiO2复合薄膜.借助X射线衍射(XRD)、原子力显微镜(AFM)和紫外-可见光谱仪分别研究了薄膜的物相结构、表面生长形貌和薄膜的紫外-可见光透过率及光学能隙,并用WS-2000型薄膜划痕仪测定薄膜与基体的界面结合强度.实验结果表明:沉积态的薄膜为非晶态,经200℃退火处理4h后,转化为良好的晶态,薄膜中主要含有锐钛矿相结构;溅射功率对薄膜的形貌,光学性能及界面结合力均有影响.尤其当溅射功率为120W时,薄膜的综合性能最优;平均晶粒尺寸110nm,表面粗糙度为160nm,吸光率达80%,光学能隙Eg仅为(2.65±0.05)eV,划痕法测量涂层与基体的附着力为60N. 相似文献
18.
19.
20.
采用射频反应磁控溅射工艺在玻璃基片上沉积了非晶态WO3薄膜。通过光催化降解亚甲基蓝和罗丹明B溶液实验,研究了所制WO3薄膜的光催化活性和使用寿命。X射线衍射(XRD)分析表明:所制备的WO3薄膜为非晶态。光催化实验表明:紫外光照3h后,薄膜对亚甲基蓝和罗丹明B溶液的最大降解率分别为83.26%和72.73%。重复使用3次后,薄膜对亚甲基蓝的降解率保持在75%以上,7次使用后薄膜基本丧失光催化活性。采用去离子水超声处理30min的方法可使已失活薄膜对亚甲基蓝的降解率从20%恢复至81%。 相似文献