首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用两步复合镀法在45钢上制备了镍-磷-金刚石复合镀层,即:先采用基础镀液(由NiSO_4·6H_2O 25 g/L、Na H_2PO_2·H_2O25 g/L、CH_3COONa·3H_2O 15 g/L和Na_3C_6H_5O_7·2H_2O 10 g/L组成,pH 4~5,温度80~85℃)化学镀镍-磷合金30 min,再在基础镀液中加入0.4 g/L金刚石微粒(平均粒径10μm),在机械间歇搅拌(搅拌10 s后停10 s)下复合镀10 min。然后在不同温度(150~450℃)下热处理1 h,研究热处理温度对复合镀层显微硬度、组织结构和摩擦学性能的影响。经350℃热处理的镍-磷-金刚石复合镀层的显微硬度为1 100 HV,摩擦学性能与进口摩擦垫片相当。  相似文献   

2.
采用电刷镀工艺在45钢表面制备了Ni-W-Co-n-Sic(纳米碳化硅)复合镀层,镀液组成和工艺条件为:NiSO_4·7H_2O 393 g/L,Na_2WO_4·2H_2O 23 g/L,H_3BO_3 31 g/L,柠檬酸42 g/L,Na_2SO_4 6.5 g/L,CoSO_4·7H_2O 3 g/L,NaF 5g/L,n-SiC 0~30 g/L,温度25~45℃,pH 1.4~2.4,电压5~7 V,镀笔速率0.8 m/s,时间25 min。以Ni-W-Co合金镀层的外观为指标,筛选得到较适合的复合电刷镀电压为6 V。研究了镀液n-SiC含量对镀层的组织结构、显微硬度和摩擦磨损性能的影响。结果表明,镀液中n-SiC含量为15~25 g/L时,可以获得颗粒均匀分布、无微裂纹的Ni-W-Co-n-SiC复合镀层。随镀液中n-SiC含量增大,复合镀层的晶化程度、Ni固溶度和显微硬度均提高,耐磨性改善,但摩擦因数的变化不大。  相似文献   

3.
以紫铜片为基体,采用电沉积法在三价铬镀液中制备了铬-金刚石复合镀层。在pH=1.0、电流密度12A/dm2、搅拌速率150r/min、温度30°C及施镀时间15min的条件下,研究了镀液中主要组分的质量浓度对铬-金刚石复合镀层厚度和外观的影响,得到较好的镀液配方为:CrCl3·6H2O170g/L,HCOOK60g/L,KCl20g/L,CH3COONa·3H2O20g/L,NH4Cl60g/L,超细金刚石25g/L。采用该配方制备的Cr-金刚石复合镀层表面平整、裂纹细小,金刚石颗粒均匀镶嵌在铬镀层中,显微硬度高达1292.6HV,综合性能优于纯铬镀层。  相似文献   

4.
为提高巴氏合金的耐磨性,将石墨烯作为增强相添加到由240g/L NiSO_4·6H_2O、45 g/L NiCl_2·6H_2O、30 g/L H_3BO_3、20 g/L Na_2SO_4和0.1 g/L十二烷基苯磺酸钠组成的镀镍液中,在ZSnSb8Cu4合金上电沉积得到镍-石墨烯复合镀层。采用扫描电镜、X射线衍射仪和摩擦磨损试验仪考察了镍-石墨烯复合镀层的表面形貌、组织结构和耐磨性。结果表明,复合电沉积镍-石墨烯能够有效提高巴氏合金基体的耐磨性,而镀液中石墨烯添加量的增大能使镀层晶粒细化,显微硬度升高,摩擦因数和磨损率减小。当镀液中石墨烯的质量浓度为400 mg/L时,镍-石墨烯复合镀层的显微硬度较高,耐磨性最优。  相似文献   

5.
采用脉冲电沉积法在碳素工具钢表面制备Cu-Sn-Ni-PTFE复合镀层。镀液配方和工艺为:K_4P_2O_7·3H_2O 266.5 g/L,Cu_2P_2O_7·4H2O 20 g/L,NiSO_4·4H_2O 0.06~0.14 mol/L,KNaC_4H_4O_6·4H_2O 31.6 g/L,Na_2SnO_3·3H_2O 40 g/L,KNO_3 40 g/L,Na_3C_6H_5O_7·2H_2O 20 g/L,PTFE 10 g/L,pH 9.5~10.0,温度35~40℃,电流密度2.5 A/dm~2,脉冲频率3 000 Hz,占空比60%,转速100 r/min,时间1 h。研究了镀液中Ni~(2+)浓度对复合镀层表面形貌、组成、显微硬度及摩擦磨损性能的影响。结果表明,镀液中Ni~(2+)浓度为0.1 mol/L时,Cu-Sn-Ni-PTFE镀层表面均匀、致密,显微硬度高达391 HV,耐磨性最好。  相似文献   

6.
采用电刷镀技术在45钢上制备了Ni-Co-纳米Al_2O_3复合镀层,镀液组成和工艺条件为:NiSO_4·7H_2O 100~125 g/L,CoSO_4·7H_2O 50g/L,NiCl_2·6H_2O 40g/L,HCOOH 18g/L,CH_3COOH 48g/L,盐酸150g/L,硫酸肼0.1g/L,纳米Al_2O_3 20g/L,正接,电压10~12V,镀笔速率5~8m/min,时间30min。通过塔菲尔曲线测试、电化学阻抗谱分析和浸泡腐蚀试验对比了电刷镀Ni-Co合金镀层、Ni-Co-纳米Al_2O_3复合镀层和挂镀硬铬层在5%NaCl溶液中的耐蚀性。结果表明,Ni-Co-纳米Al_2O_3复合镀层表面平整、均匀、致密,纳米Al_2O_3均匀分布,耐蚀性优于Ni-Co合金镀层和硬铬镀层,有望取代硬铬镀层在中性腐蚀环境中的应用。  相似文献   

7.
以镀液稳定性、纳米TiO_2在镀液中的分散性、沉积速率以及复合镀层的磷含量、TiO_2颗粒含量和显微硬度为评价指标,研究了镀液中硫酸铜添加量对Ni-P-纳米TiO_2复合化学镀的影响。镀液配方和工艺为:NaH_2PO_2·H_2O 32 g/L,NiSO_4·6H_2O 26 g/L,一水合柠檬酸20 g/L,CH_3COONa·3H_2O 15 g/L,表面活性剂20~40 mg/L,纳米TiO_2 1~2 g/L,CuSO_4·5H_2O 2~12 mg/L,温度(88±1)℃,pH=4.8±0.2,时间1 h。结果表明,镀液中添加适量硫酸铜后,沉积速率加快,复合镀液的稳定性和纳米TiO_2在其中的分散性改善。所得Ni-P-纳米TiO_2复合镀层的耐蚀性得到改善,显微硬度提高,孔隙率降低。硫酸铜的较优添加量为4mg/L。  相似文献   

8.
研究了丁二酸对化学镀Ni-P纳米TiO_2复合镀层性能的影响。镀液组成及工艺条件为:NaH_2PO_2·H_2O 32g/L,NiSO_4·6H_2O 26g/L,一水合柠檬酸20g/L,CH_3COONa·3H_2O 15g/L,十二烷基苯磺酸钠40 mg/L,纳米TiO_2微粒0.6~1.5g/L,丁二酸4~24 mg/L,温度(88±1)°C,pH值4.8±0.2,时间1h。加入适量的丁二酸,能够提高镀液的稳定性,加快沉积速率,提高镀层中磷的质量分数、显微硬度及耐蚀性。丁二酸的最佳质量浓度为2g/L。  相似文献   

9.
以MoS_2作为增强相添加到由240 g/L NiSO_4·6H_2O、45 g/L NiCl_2·6H_2O、30 g/L H_3BO_3、20 g/L Na_2SO_4和0.2 g/L十六烷基三甲基溴化铵组成的镀液中,在45钢表面电沉积得到Ni–MoS_2复合镀层。采用扫描电镜、X射线衍射仪和摩擦磨损试验仪考察了MoS_2添加量对Ni–MoS_2复合镀层的表面形貌、相结构和耐磨性的影响。随着MoS_2添加量的增大,Ni–MoS_2复合镀层表面凸起的胞状结构增多,显微硬度先增大后减小,摩擦因数降低。当MoS_2的添加量为2 g/L时,所得Ni–MoS_2复合镀层的显微硬度为860.5 HV,耐磨性较佳。  相似文献   

10.
以氨基磺酸盐镀镍液在黄铜基体上进行镍-金刚石复合电镀,采用正交试验考察了金刚石添加量以及FC-001全氟环氧烷基类非离子表面活性剂、双十二烷基二甲基氯化铵(D1221)和乙二胺四乙酸(EDTA)这三种添加剂的配比对镀层结合强度与孔隙率的影响,确定了最优镀液配方为:Ni(NH_2SO_3)_2·7H_2O 500~550 g/L,NiCl_2·6H_2O 10~12g/L,H_3BO_3 35~40g/L,金刚石80 g/L,FC-001 0.15 g/L,D1221 0.2 g/L, EDTA 1.5 g/L。所得镀层结合强度为17.305 MPa,孔隙率0.062。偏光显微镜和扫描电镜观察显示,金刚石在镀层中分布较均匀,其复合量为47_(-7)~(+20)个/cm~2。该工艺适用于制备金刚石线锯。  相似文献   

11.
采用电沉积法在铁片上制备Ni–W–微米SiC复合镀层。研究了微米SiC颗粒用量、pH、电流密度等工艺参数对复合镀层中SiC颗粒含量的影响,得到最优工艺为:NiSO_4·6H_2O 20 g/L,Na_2WO_4·2H_2O 50 g/L,Na_3C_6H_8O_7·2H_2O 50 g/L,微米SiC颗粒20g/L,pH7.0,电流密度2.5 A/dm~2。采用X射线衍射仪、扫描电子显微镜、能谱仪和浸泡腐蚀试验表征了Ni–W–微米SiC复合镀层的晶相结构、表面形貌、元素组成和耐蚀性。采用红外光谱法初步探讨了SiC微米颗粒的沉积机理。结果表明,SiC微米颗粒在复合镀层中的质量分数可高达42.5%,SiC微米颗粒的存在能消除Ni–W合金镀层的裂纹,从而提高镀层对基体的保护能力。镀液中的阴离子可能对SiC微米颗粒的沉积过程有一定的影响。  相似文献   

12.
采用复合电镀工艺在纯铜棒表面制备了Ni–WC复合镀层。镀液组成和工艺条件为:NiSO_4·6H_2O 250~300 g/L,NiCl_2·6H_2O 40~50 g/L,H_3BO_3 30~45 g/L,十二烷基硫酸钠0.05 g/L,WC微粒(平均粒径400 nm)25~45 g/L,温度30~50°C,电流密度2.0~4.0 A/dm2,时间4 h。研究了WC添加量、阴极电流密度及镀液温度对Ni–WC复合镀层的WC含量和显微硬度的影响。WC添加量为35 g/L,镀液温度为40°C和阴极电流密度为3.0 A/dm~2,所得Ni–WC复合镀层的厚度为103μm,WC质量分数为29.95%,显微硬度为322.4 HV。分别采用Ni–WC复合电极、纯铜电极和纯镍电极为工具电极,对W_7Mo_4Cr_4V_2Co_5高速钢进行电火花加工。结果表明,最佳工艺下制备的Ni–WC复合电极的损耗率分别为纯铜电极和纯镍电极损耗率的72%和62%。  相似文献   

13.
通过正交试验,得出碳钢上电沉积Ni-W-PTFE复合镀层的镀液最佳配比为:50 g/L NiSO4·6H2O,50 g/L Na2WO4·2H2O,35 g/L NiCl2·6H2O,40 mL/L PTFE乳液.对在此条件下电沉积的复合镀层进行能谱分析,得到镀层的成分为:镍83.01%,钨11.21%,碳5.19%,氟0.58%.镀层金相组织均匀,摩擦因数为0.16,在盐酸-硫酸混合溶液中的腐蚀速率为4.9 g/(m2·h).  相似文献   

14.
采用复合电沉积法制备了金刚石切割线,主要工艺流程为:钢丝和金刚石粉的镀前处理,碱性预镀铜,金刚石上砂镀(铜–金刚石复合镀),加厚镀镍,后处理。通过测定镀液的阴极极化曲线以及镀层的表面形貌、力学性能和结合力等,研究了电流密度、镀液中金刚石含量、搅拌速率、电镀时间等工艺参数对金刚石上砂效果的影响。实验表明,随着镀液中金刚石含量的增大,铜–金刚石共沉积的阴极极化曲线负移,相同电位下的电流减小;低电压下,相同电位处的阴极电流随搅拌速率增大而增大,高电压下反之。随着阴极电流密度提高或施镀时间延长,金刚石上砂量呈先增后减的趋势。经200°C热处理2 h后,金刚石切割线的最大拉断力和抗拉强度分别为159.7 N和2 258.8 MPa,力学性能明显改善。在电流密度5~7 A/dm2下制备的金刚石切割线,其镀层和钢基体之间的结合力良好。  相似文献   

15.
工艺参数对电镀镍铜合金镀层成分及相结构的影响   总被引:1,自引:0,他引:1  
杨瑞嵩  李明田  王莹  鲁越 《电镀与涂饰》2014,33(15):633-635
采用由200 g/L NiSO4·6H2O、10 g/L CuSO4·5H2O、80 g/L Na3C6H5O7·2H2O、0.2 g/L C12H25SO4Na和0.5 g/L糖精钠组成的镀液,在10~60 mA/cm2、pH=2.5~5.0和25~50°C条件下电沉积制备了NiCu合金镀层。探讨了镀液pH、电流密度、温度等工艺参数对镍铜合金镀层相结构和组成的影响。结果表明,NiCu合金镀层的铜含量随电流密度或温度升高而增大。但随pH增大,镀层铜含量降低,pH小于4.0时,NiCu合金镀层中含有单质铜。  相似文献   

16.
研究了抗坏血酸对硫酸盐体系电镀Ni–Fe合金镀液稳定性的影响,镀液(pH=4.2)组成为:NiSO_4·6H_2O 300 g/L,NiCl_2·6H_2O40 g/L,FeSO_4·7H_2O 0.75 g/L,H_3BO_3 30 g/L,十二烷基磺酸钠8 mg/L,抗坏血酸0.00~0.15 g/L。结果表明,抗坏血酸可抑制镀液中Fe~(2+)的氧化。当抗坏血酸质量浓度为0.10 g/L时,镀液的稳定性最好,镀层的耐蚀性得到提高。  相似文献   

17.
以镀液稳定性、沉积速率、镀层磷含量和光泽度为评价指标,研究了硫酸铜、硫酸高铈和硫脲各自作为稳定剂时对45钢上中温化学镀镍的影响。镀液的基础配方和工艺条件为:NaH_2PO_2·H_2O 28 g/L,Ni SO4·6H_2O 26 g/L,C_6H_8O_7·H_2O 12 g/L,CH_3COONa·3H_2O 15 g/L,十二烷基磺酸钠(SDS)10 mg/L,丁二酸3 g/L,pH 5.2±0.2,温度(75±2)°C,时间1 h。采用硫酸铜作为稳定剂时,镀层的光泽度最好,但沉积速率较慢;采用硫脲作为稳定剂时,镀液稳定性最好,沉积速率最快,但镀层光泽度较低;采用硫酸高铈作为稳定剂时,化学镀镍的效果不佳。将6 mg/L CuSO_4·5H_2O与2 mg/L硫脲复配时,镀液稳定性最好,沉积速率为15.72μm/h,可获得光泽度为171.3 Gs、表面平滑、结晶细致的中磷化学镀镍层。  相似文献   

18.
王照锋 《电镀与涂饰》2014,33(15):656-658
通过复合电刷镀在20钢基体表面制备镍铁–立方氮化硼(CBN)复合镀层。研究了施镀电压、镀液温度及镀笔速率对复合镀层中CBN含量的影响,分析了镀层中CBN含量与耐磨性之间的关系。复合电刷镀NiFe–CBN的镀液组成和最佳工艺条件为:NiSO4·6H2O 270~300 g/L,FeCl2·2H2O 23~27 g/L,H3BO326~30 g/L,Na3C6H5O7·2H2O 20~30 g/L,糖精2~3 g/L,十六烷基三甲基溴化铵0.2~0.3 g/L,pH 3.2~4.0,电压14 V,温度50°C,镀笔速率15 m/min,时间100~120 min。在最佳工艺下所得镀层的CBN质量分数为9.8%,显微硬度为770 HV,耐磨性和结合力良好。  相似文献   

19.
在45钢上脉冲电沉积Ni–W–HNTs复合镀层,基础镀液组成和工艺条件为:NiSO_4·6H_2O 15.8 g/L,Na_2WO_4·2H_2O 46.2 g/L,NaBr 15.5 g/L,柠檬酸三钠147.0 g/L,NH4Cl 26.7 g/L,十二烷基硫酸钠(SDS)0.1 g/L,pH=8.5,温度(70±5)°C,时间60 min。研究了镀液HNTs用量、平均电流密度、脉冲频率和占空比对复合镀层HNTs含量和厚度的影响,得到HNTs的最佳用量为10 g/L,最优脉冲参数为:平均电流密度7 A/dm2,脉冲频率800 Hz,占空比70%。该条件下所得Ni–W–HNTs复合镀层结构均匀、致密,表面平整,厚度为34μm,HNTs质量分数为8.72%,在3.5%NaCl溶液中的耐蚀性优于Ni–W合金镀层。  相似文献   

20.
以泡沫镍为基体,利用电沉积法制备Ni–S–TiO_2多孔复合电极,镀液组成和工艺条件为:NiSO_4·6H_2O 180~250 g/L,H_3BO_3 35~40 g/L,硫脲100~150 g/L,TiO_2纳米微粒(粒径约为20 nm)5~20 g/L,表面活性剂0.1 g/L,pH 3.5~4.0,温度45°C,电流密度30 mA/cm~2,机械搅拌速率250~300 r/min,时间30 min。研究了镀液中TiO_2添加量对复合电极析氢活性的影响。采用扫描电镜和X射线衍射仪表征了Ni–S–TiO_2复合电极的表面形貌和晶态结构。利用阴极极化曲线和电化学阻抗谱测试研究不同电极在1 mol/L NaOH溶液中的析氢催化活性,并通过计时电位法研究电极的稳定性。结果表明,Ni–S–TiO_2电极由纳米TiO_2粒子相和非晶态Ni–S相构成,其析氢催化活性和稳定性优于Ni–S电极。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号