首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RecA protein of Escherichia coli plays an essential role in homologous recombination of DNA strands. To analyze the interaction of RecA with single-stranded DNA (ssDNA), we performed a fluorescence competition assay employing 1-anilinonaphthalene-8-sulfonic acid (ANS) as an extrinsic fluorescent probe. ANS bound to RecA at three sites, leading to enhancement of ANS fluorescence. Addition of synthetic polynucleotides to the RecA-ANS complex in the absence of a nucleotide quenched the ANS fluorescence, indicating displacement of ANS molecules by ssDNA. Less effective quenching by poly(dA) suggests that the nucleoprotein filament on poly(dA) may differ from those on poly(dT) and poly(dC). A titration experiment with poly(dT) and poly(dA) showed clear stoichiometric binding of 3.5 nucleotides per protein. The site size for poly(dC) was 7.0, which could be explained by the formation of a double helix of poly(dC). ATP and other nucleotides also displaced the ANS. To identify ANS-binding sites, ANS was incorporated into RecA by UV irradiation, and fluorescent peptides were isolated from the proteolytic digest. Sequence analysis suggested that ANS binds to or near the ATP-binding region. These results suggest that the fluorescence quenching and photoincorporation assay using ANS may be useful for the analysis of the interaction of a protein and its ligand.  相似文献   

2.
The Escherichia coli RecA protein promotes DNA strand exchange in homologous recombination and recombinational DNA repair. Stopped-flow kinetics and fluorescence resonance energy transfer (FRET) were used to study RecA-mediated strand exchange between a 30-bp duplex DNA and a homologous single-stranded 50mer. In our standard assay, one end of the dsDNA helix was labeled at apposing 5' and 3' ends with hexachlorofluorescein and fluorescein, respectively. Strand exchange was monitored by the increase in fluorescence emission resulting upon displacement of the fluorescein-labeled strand from the initial duplex. The potential advantages of FRET in study of strand exchange are that it noninvasively measures real-time kinetics in the previously inaccessible millisecond time regime and offers great sensitivity. The oligonucleotide substrates model short-range mechanistic effects that might occur within a localized region of the ternary complex formed between RecA and long DNA molecules during strand exchange. Reactions in the presence of ATP with 0.1 microM duplex and 0.1-1.0 microM ss50mer showed triphasic kinetics in 600 s time courses, implying the existence of three mechanistic steps subsequent to presynaptic filament formation. The observed rate constants for the intermediate phase were independent of the concentration of ss50mer and most likely characterize a unimolecular isomerization of the ternary complex. The observed rate constants for the first and third phases decreased with increasing ss50mer concentration. Kinetic experiments performed with the nonhydrolyzable analogue ATPgammaS showed overall changes in fluorescence emission identical to those observed in the presence of ATP. In addition, the observed rate constants for the two fastest reaction phases were identical in ATP or ATPgammaS. The observed rate constant for the slowest phase showed a 4-fold reduction in the presence of ATPgammaS. Results in ATPgammaS using an alternate fluorophore labeling pattern suggest a third ternary intermediate may form prior to ssDNA product release. The existence of two or three ternary intermediates in strand exchange with a 30 bp duplex suggests the possibility that the step size for base pair switching may be 10-15 bp. Products of reactions in the presence of ATP and ATPgammaS, with and without proteinase K treatment, were analyzed on native polyacrylamide gels. In reactions in which only short-range RecA-DNA interactions were important, ATP hydrolysis was not required for recycling of RecA from both oligonucleotide products. Hydrolysis or deproteinization was required for RecA to release the heteroduplex product, but not the outgoing single strand.  相似文献   

3.
BACKGROUND: The RAD51 gene of Saccharomyces cerevisiae is homologous to the Escherichia coli recA gene and plays a key role in genetic recombination and DNA double-strand break repair. To construct an improved experimental system of homologous recombination in higher eukaryotes, we have chosen the South African clawed frog, Xenopus laevis, whose egg extracts might be useful for the in vitro studies. We identified and characterized a Xenopus homologue of RAD51 gene, the XRAD51.1. RESULTS: Recombinant XRad51.1 was expressed in E. coli. The purified XRad51.1 protein showed ssDNA-dependent ATPase activity and promoted the DNA strand exchange reaction between two 55-mer oligonucleotides. The binding stoichiometry of XRad51.1 to ssDNA was determined by fluorescence of poly(d epsilonA), a chemically modified poly(dA), and was found to be about six bases/XRad51.1 monomer in a nucleoprotein filament, a similar value to E. coli RecA protein. The kinetics of the fluorescence change of poly(d epsilonA) after XRad51.1 binding in the presence of ATP was significantly different from that observed with RecA protein. The affinity of XRad51.1 to ssDNA in the presence of ATP was higher than that of RecA protein, and the dissociation of the XRad51.1-ssDNA complex was slower than the RecA-ssDNA complex. CONCLUSIONS: Purified recombinant XRad51.1 protein promoted the strand exchange between short DNA molecules. While the binding stoichiometry of XRad51.1 protein to ssDNA was identical to that of the RecA protein, XRad51.1 has a significantly higher affinity and binding stability to ssDNA than did the RecA protein in the presence of ATP.  相似文献   

4.
Saccharomyces cerevisiae Rad51 protein is the paradigm for eukaryotic ATP-dependent DNA strand exchange proteins. To explain some of the unique characteristics of DNA strand exchange promoted by Rad51 protein, when compared with its prokaryotic homologue the Escherichia coli RecA protein, we analyzed the DNA binding properties of the Rad51 protein. Rad51 protein binds both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in an ATP- and Mg2+-dependent manner, over a wide range of pH, with an apparent binding stoichiometry of approximately 1 protein monomer per 4 (+/-1) nucleotides or base pairs, respectively. Only dATP and adenosine 5'-gamma-(thiotriphosphate) (ATPgammaS) can substitute for ATP, but binding in the presence of ATPgammaS requires more than a 5-fold stoichiometric excess of protein. Without nucleotide cofactor, Rad51 protein binds both ssDNA and dsDNA but only at pH values lower than 6.8; in this case, the apparent binding stoichiometry covers the range of 1 protein monomer per 6-9 nucleotides or base pairs. Therefore, Rad51 protein displays two distinct modes of DNA binding. These binding modes are not inter-convertible; however, their initial selection is governed by ATP binding. On the basis of these DNA binding properties, we conclude that the main reason for the low efficiency of the DNA strand exchange promoted by Rad51 protein in vitro is its enhanced dsDNA-binding ability, which inhibits both the presynaptic and synaptic phases of the DNA strand exchange reaction as follows: during presynapsis, Rad51 protein interacts with and stabilizes secondary structures in ssDNA thereby inhibiting formation of a contiguous nucleoprotein filament; during synapsis, Rad51 protein inactivates the homologous dsDNA partner by directly binding to it.  相似文献   

5.
The RecA protein of Escherichia coli is a prototype of the RecA/Rad51 family of proteins that exist in virtually all the organisms. In a process called DNA synapsis, RecA first polymerizes onto a single-stranded DNA (ssDNA) molecule; the resulting RecA-ssDNA complex then searches for and binds to a double-stranded DNA (dsDNA) molecule containing the almost identical, or "homologous, " sequence. The RecA-ssDNA complex thus can be envisioned as a sequence-specific binding entity. How does the complex search for its target buried within nonspecific sequences? One possible mechanism is the sliding mechanism, in which the complex first binds to a dsDNA molecule nonspecifically and then linearly diffuses, or slides, along the dsDNA. To understand the mechanism of homology search by RecA, this sliding model was tested. A plasmid containing four homologous targets in tandem was constructed and used as the dsDNA substrate in the synapsis reaction. If the sliding is the predominant search mode, the two outermost targets should act as more efficient targets than the inner targets. No such positional preference was observed, indicating that a long range sliding of the RecA-ssDNA complex does not occur. These and other available data can be adequately explained by a simple three-dimensional random collision mechanism.  相似文献   

6.
The RecA, UmuC, and UmuD' proteins are essential for error-prone, replicative bypass of DNA lesions. Normally, RecA protein mediates homologous pairing of DNA. We show that purified Umu(D')2C blocks this recombination function. Biosensor measurements establish that the mutagenic complex binds to the RecA nucleoprotein filament with a stoichiometry of one Umu(D')2C complex for every two RecA monomers. Furthermore, Umu(D')2C competitively inhibits LexA repressor cleavage but not ATPase activity, implying that Umu(D')2C binds in or proximal to the helical groove of the RecA nucleoprotein filament. This binding reduces joint molecule formation and even more severely impedes DNA heteroduplex formation by RecA protein, ultimately blocking all DNA pairing activity and thereby abridging participation in recombination function. Thus, Umu(D')2C restricts the activities of the RecA nucleoprotein filament and presumably, in this manner, recruits it for mutagenic repair function. This modulation by Umu(D')2C is envisioned as a key event in the transition from a normal mode of genomic maintenance by "error-free" recombinational repair, to one of "error-prone" DNA replication.  相似文献   

7.
RecA is a 38-kDa protein from Escherichia coli that polymerizes on single-stranded DNA, forming a nucleoprotein filament that pairs with homologous duplex DNA and carries out strand exchange in vitro. In this study, we measured RecA-catalyzed pairing and strand exchange in solution by energy transfer between fluorescent dyes on the ends of deoxyribo-oligonucleotides. By varying the position of the dyes in separate assays, we were able to detect the pairing of single-stranded RecA filament with duplex DNA as an increase in energy transfer, and strand displacement as a decrease in energy transfer. With these assays, the kinetics of pairing and strand displacement were studied by stopped-flow spectrofluorometry. The data revealed a rapid, second order, reversible pairing step that was followed by a slower, reversible, first order strand exchange step. These data indicate that an initial unstable intermediate exists which can readily return to reactants, and that a further, rate-limiting step (or steps) is required to effect or complete strand exchange.  相似文献   

8.
The RecT protein of Escherichia coli is a DNA-pairing protein required for the RecA-independent recombination events promoted by the RecE pathway. The RecT protein was found to bind to both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in the absence of Mg2+. In the presence of Mg2+, RecT binding to dsDNA was inhibited drastically, whereas binding to ssDNA was inhibited only to a small extent. RecT promoted the transfer of a single-stranded oligonucleotide into a supercoiled homologous duplex to form a D (displacement)-loop. D-loop formation occurred in the absence of Mg2+ and at 1 mM Mg2+ but was inhibited by increasing concentrations of Mg2+ and did not require a high energy cofactor. Strand transfer was mediated by a RecT-ssDNA nucleoprotein complex reacting with a naked duplex DNA and was prevented by the formation of RecT-dsDNA nucleoprotein complexes. Finally, RecT mediated the formation of joint molecules between a supercoiled DNA and a linear dsDNA substrate with homologous 3'-single-stranded tails. Together these results indicate that RecT is not a helix-destabilizing protein promoting a reannealing reaction but rather is a novel type of pairing protein capable of promoting recombination by a DNA strand invasion mechanism. These results are consistent with the observation that RecE (exonuclease VIII) and RecT can promote RecA-independent double-strand break repair in E. coli.  相似文献   

9.
The Escherichia coli RecA protein is the prototype of the RecA/RAD51/DMC1 family of strand transferases acting in genetic recombination. The E96D mutant was previously isolated in a screen for toxic recA mutants and was found to constitutively derepress the SOS genes and inhibit chromosome segregation in E. coli. Here, we have found that the E96D mutation lowers the RecA kcat value for ATP hydrolysis 100-fold. Use of this mutant reveals that the ATPase and branch migration activities of RecA are not necessarily required for catalyzing in vivo recombinational pairing and LexA cleavage. In addition to its effect on ATP hydrolysis, the mutation causes ATP to more strongly promote the transition to the biologically active, extended conformation of the RecA enzyme. The enhanced ATP binding is apparently the cause for a broader nucleic acid ligand specificity. The use of RNA and double-stranded DNA as cofactors for LexA cleavage could give rise to the inappropriate, constitutive derepression of the SOS genes. This underscores the need for the ATP affinity to be optimized so that RecA becomes selectively activated only during DNA repair and recombination through binding single-stranded DNA.  相似文献   

10.
A recA mutant (recA423; Arg169-->His), with properties that should help clarify the relationship between the biochemical properties of RecA protein and its two major functions, homologous genetic recombination and recombinational DNA repair, has been isolated. The mutant has been characterized in vivo and the purified RecA423 protein has been studied in vitro. The recA423 cells are nearly as proficient in conjugational recombination, transductional recombination, and recombination of lambda red- gam- phage as wild-type cells. At the same time, the mutant cells are deficient for intra-chromosomal recombination and nearly as sensitive to UV irradiation as a recA deletion strain. The cells are proficient in SOS induction, and results indicate the defect involves the capacity of RecA protein to participate directly in recombinational DNA repair. In vitro, the RecA423 protein binds to single-stranded DNA slowly, with an associated decline in the ATP hydrolytic activity. The RecA423 protein promoted a limited DNA strand exchange reaction when the DNA substrates were homologous, but no bypass of a short heterologous insert in the duplex DNA substrate was observed. These results indicate that poor binding to DNA and low ATP hydrolysis activity can selectively compromise certain functions of RecA protein. The RecA423 protein can promote recombination between homologous DNAs during Hfr crosses, indicating that the biochemical requirements for such genetic exchanges are minimal. However, the deficiencies in recombinational DNA repair suggest that the biochemical requirements for this function are more exacting.  相似文献   

11.
The Escherichia coli RecA protein has served as a model for understanding protein-catalyzed homologous recombination, both in vitro and in vivo. Although RecA proteins have now been sequenced from over 60 different bacteria, almost all of our structural knowledge about RecA has come from studies of the E. coli protein. We have used electron microscopy and image analysis to examine three different structures formed by the RecA protein from the thermophilic bacterium Thermus aquaticus. This protein has previously been shown to catalyze an in vitro strand exchange reaction at an optimal temperature of about 60 degrees C. We show that the active filament formed by the T. aquaticus RecA on DNA in the presence of a nucleotide cofactor is extremely similar to the filament formed by the E. coli protein, including the extension of DNA to a 5.1-A rise per base pair within this filament. This parameter appears highly conserved through evolution, as it has been observed for the eukaryotic RecA analogs as well. We have also characterized bundles of filaments formed by the T. aquaticus RecA in the absence of both DNA and nucleotide cofactor, as well as hexameric rings of the protein formed under all conditions examined. The bundles display a very large plasticity of mass within the RecA filament, as well as showing a polymorphism in filament-filament contacts that may be important to understanding mutations that affect surface residues on the RecA filament.  相似文献   

12.
13.
RecA protein catalyzes the DNA annealing and mimics the DNA strand exchange reaction in vitro in the presence of ATP or its non-hydrolyzable analog, adenosine 5'-O-3-thiotriphosphate (ATPgammaS). For these activities RecA coordinates two DNA molecules [Takahashi, M. and Nordén, B. (1994) Adv. Biophys. 30, 1-35]. In order to get a better understanding of how RecA performs the search for sequence complementarity or homology between two DNA molecules, the association and dissociation kinetics of a second DNA molecule to and from RecA in the presence of ATPgammaS have been investigated. The kinetics were monitored by fluorescence measurements of partly etheno-modified poly(dA) assisted by linear dichroism measurements of the flow-oriented complex. The association of the second DNA is fast, regardless of whether the sequence is complementary or not. By contrast, the dissociation kinetics is strongly dependent on sequence complementarity. If the second DNA is complementary to the first, dissociation is extremely slow, whilst that of non-complementary second DNA is fast. In no case does the first DNA leave the RecA fiber. Our findings indicate that the dissociation step is important in the search for homology by RecA.  相似文献   

14.
Most biological organisms rely upon a DNA polymerase holoenzyme for processive DNA replication. The bacteriophage T4 DNA polymerase holoenzyme is composed of the polymerase enzyme and a clamp protein (the 45 protein), which functions as a processivity factor by strengthening the interaction between DNA and the holoenzyme. The 45 protein must be loaded onto DNA by a clamp loader ATPase complex (the 44/62 complex). In this paper, the order of events leading to holoenzyme formation is investigated using a combination of rapid-quench and stopped-flow fluorescence spectroscopy kinetic methods. A rapid-quench strand displacement assay in which the order of holoenzyme component addition is varied provided data indicating that the rate-limiting step in holoenzyme assembly is associated with the clamp loading process. Pre-steady-state analysis of the clamp loader ATPase activity demonstrated that the four bound ATP molecules are hydrolyzed stepwise during the clamp loading process in groups of two. Clamp loading was examined with stopped-flow fluorescence spectroscopy from the perspective of the clamp itself, using a site-specific, fluorescently labeled 45 protein. A mechanism for T4 DNA polymerase holoenzyme assembly is proposed in which the 45 protein interacts with the 44/62 complex leading to the hydrolysis of 2 equiv of ATP, and upon contacting DNA, the remaining two ATP molecules bound to the 44/62 complex are hydrolyzed. Once all four ATP molecules are hydrolyzed, the 45 protein is poised on DNA for association with the polymerase to form the holoenzyme.  相似文献   

15.
Self-assembly of RecA protein in solution and on single-stranded DNA exerts a significant effect on the catalytic activities of this protein. To manipulate the self-association reaction, we examined the effects of various salts on the self-association of RecA from Thermus thermophilus (ttRecA) by circular dichroism spectroscopy and gel-filtration analysis. We showed that the self-association of ttRecA strongly depends on the kind and concentration of the salt, as well as on the protein concentration. Chaotropic ions were especially useful for obtaining RecA in its hexameric and monomeric states. On the basis of these observations, we were able to regulate the oligomeric states of ttRecA and we then examined the activity of RecA in various oligomeric states. Monomeric ttRecA bound to ssDNA and formed a nucleoprotein filament, which showed ssDNA-dependent ATPase activity. These results suggest that the monomeric form of RecA is an intermediate in filament formation on ssDNA.  相似文献   

16.
The p21 protein, a cyclin-dependent kinase (CDK) inhibitor, is capable of binding to both cyclin-CDK and the proliferating cell nuclear antigen (PCNA). Through its binding to PCNA, p21 can regulate the function of PCNA differentially in replication and repair. To gain an understanding of the precise mechanism by which p21 affects PCNA function, we have designed a new assay for replication factor C (RFC)-catalyzed loading of PCNA onto DNA, a method that utilizes a primer-template DNA attached to agarose beads via biotin-streptavidin. Using this assay, we showed that RFC remains transiently associated with PCNA on the DNA after the loading reaction. Addition of p21 did not inhibit RFC-dependent PCNA loading; rather, p21 formed a stable complex with PCNA on the DNA. In contrast, the formation of a p21-PCNA complex on the DNA resulted in the displacement of RFC from the DNA. The nonhydrolyzable analogs of ATP, adenosine-5'-O-(3-thiotriphosphate) (ATPgammaS) and adenyl-imidodiphosphate, each stabilized the primer recognition complex containing RFC and PCNA in the absence of p21. RFC in the ATPgammaS-activated complex was no longer displaced from the DNA by p21. We propose that p21 stimulates the dissociation of the RFC from the PCNA-DNA complex in a process that requires ATP hydrolysis and then inhibits subsequent PCNA-dependent events in DNA replication. The data suggest that the conformation of RFC in the primer recognition complex might change on hydrolysis of ATP. We also suggest that the p21-PCNA complex that remains attached to DNA might function to tether cyclin-CDK complexes to specific regions of the genome.  相似文献   

17.
Prp20/Srm1, a homolog of the mammalian protein RCC1 in Saccharomyces cerevisiae, binds to double-stranded DNA (dsDNA) through a multicomponent complex in vitro. This dsDNA-binding capability of the Prp20 complex has been shown to be cell-cycle dependent; affinity for dsDNA is lost during DNA replication. By analyzing a number of temperature sensitive (ts) prp20 alleles produced in vivo and in vitro, as well as site-directed mutations in highly conserved positions in the imperfect repeats that make up the protein, we have determined a relationship between the residues at these positions, cell viability, and the dsDNA-binding abilities of the Prp20 complex. These data reveal that the essential residues for Prp20 function are located mainly in the second and the third repeats at the amino-terminus and the last two repeats, the seventh and eighth, at the carboxyl-terminus of Prp20. Carboxyl-terminal mutations in Prp20 differ from amino-terminal mutations in showing loss of dsDNA binding: their conditional lethal phenotype and the loss of dsDNA binding affinity are both suppressible by overproduction of Gsp1, a GTP-binding constituent of the Prp20 complex, homologous to the mammalian protein TC4/Ran. Although wild-type Prp20 does not bind to dsDNA on its own, two mutations in conserved residues were found that caused the isolated protein to bind dsDNA. These data imply that, in situ, the other components of the Prp20 complex regulate the conformation of Prp20 and thus its affinity for dsDNA. Gsp1 not only influences the dsDNA-binding ability of Prp20 but it also regulates other essential function(s) of the Prp20 complex. Overproduction of Gsp1 also suppresses the lethality of two conditional mutations in the penultimate carboxyl-terminal repeat of Prp20, even though these mutations do not eliminate the dsDNA binding activity of the Prp20 complex. Other site-directed mutants reveal that internal and carboxyl-terminal regions of Prp20 that lack homology to RCC1 are dispensable for dsDNA binding and growth.  相似文献   

18.
In addition to its critical role in genetic recombination, the Escherichia coli RecA protein plays a pivotal role in SOS-induced mutagenesis. This role can be separated genetically into three steps: (i) depression of the SOS regulon by mediating the posttranslational cleavage of the LexA repressor, (ii) activation of UmuD'-like proteins by mediating cleavage of the UmuD-like proteins, and (iii) a direct step, possibly to interact with and to target the Umu-like mutagenesis proteins to lesions in DNA. We have analyzed RecA's third role biochemically using protein affinity chromatography and an agarose-based DNA mobility-shift assay. RecA730 protein from a crude cell extract was specifically retained on UmuD and UmuD' protein affinity columns, suggesting that these proteins physically interact. Normally, neither UmuD nor UmuD' shows any affinity for DNA. In the presence of RecA protein, however, UmuD and UmuD' were targeted to DNA. RecA1730 protein, which is defective for UmuD' but proficient for MucA'-promoted mutagenesis, showed a dramatically reduced capacity to target UmuD' to DNA but was able to target a significant portion of MucA' to DNA. These data support the suggestion that the direct role of RecA protein in SOS-induced mutagenesis is to interact with and target the Umu-like mutagenesis proteins to DNA.  相似文献   

19.
20.
We have characterized a DNA binding protein (DBNP-B) from the thermoacidophilic archaeon Sulfolobus acidocaldarius with respect to its interaction with single and double stranded DNA. The protein in solution exists predominantly as dimer as indicated by cross linking studies. Binding of DBNP-B to etheno DNA and poly (dA) resulted in fluorescence enhancement and hyperchromicity respectively. Ethidium bromide intercalated into DNA was completely displaced by DBNP-B. DNase I digestion of dsDNA was increased at subsaturating concentration of the protein and was inhibited at higher concentrations. These results and electron microscopy indicate that the protein forms different types of novel complexes with DNA at different protein to DNA ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号