首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous paper, it was pointed out that the stabilization mechanism through metal soaps might be affected by an effect of complementary color. In this work, the colors of heated poly(vinyl chloride) (PVC) films mixed with various metal soaps were investigated by using a differential colorimeter and a spectrophotometer. Monochromatic coloration was observed with PVC, PVC–Ca stearate, and PVC–Ba stearate systems. On the other hand, the phenomenon of color mixing was observed with PVC–Zn stearate, PVC–Cd stearate, PVC–Zn/Ca stearate, and PVC–Cd/Ba stearate systems. In particular, achromatic color remained with PVC–Zn/Ca stearate and Cd/Ba stearate systems for longer heating periods. This means that the stabilization mechanism for PVC compounded with metal soaps should be effected finally by subtractive complementary colors situated between polyene color and the color effected with the metal complex, in addition to being subject to the usual chemical stabilization mechanisms.  相似文献   

2.
Effects of bisphenol A type epoxy compounds involving various average molecular weights on the zinc stearate/calcium stearate and the cadmium stearate/barium stearate synergetic soaps induced thermal stabilization of poly(vinyl chloride) (PVC) were investigated by colorimetry. The remarkable stabilization effects of epoxides could not be observed on the PVC films without synergetic soaps, while the stabilization of PVC was markedly enhanced by combined use of epoxides and synergetic soaps. The appearance of excessive coloration of cool color producing metal chloride–polyene complexes which were an origin of abrupt discoloration of stabilized PVC was retarded by using epoxides together with synergetic soaps. Moreover, as for PVC with or without synergetic soaps, the epoxy compounds did not inhibit the formation of longer polyene chains which were a chromophore for yellow orange of aged PVC. Further colorimetries and IR or X-ray photoelectron spectroscopies on the various PVC containing epoxy compounds and zinc chloride indicated that the epoxy groups caught the zinc chloride. The synergetic effect between epoxy compounds and synergetic metal soaps is ascribed to the action that the epoxides serve as an acceptor for the excessive cool color producing metal chloride produced from zinc stearate and cadmium stearate to retard the abrupt discoloration of stabilized PVC.  相似文献   

3.
The stabilization mechanism by synergetic metal soaps containing complementary colors was previously reported. With increased heating times, the color of heated poly(vinyl chloride) (PVC) films containing Cd/Ba and Zn/Ca synergetic soaps markedly deviated from the polyene color. These color deviations usually decreased the thermal stability of PVC. Discoloration from polyene color to blue appeared especially on PVC films containing Zn/Ca synergetic soap and was concomitant with a marked decrease in thermal stability. The stabilization of PVC containing synergetic metal soaps can be improved by masking or removing the excessive color. In this work, the addition of various masking agents, such as ethylenediaminetetraacetic acid, o-phenanthroline, triethanolamine, urea, N,N′ -dimethylolurea, melamine, stearylamide, and lactams, to PVC containing synergetic metal soaps was investigated. It was shown that these masking agents do markedly slow down the discoloration of PVC.  相似文献   

4.
Effects of epoxidized 1,2- or 1,4-polybutadienes on the zinc stearate/calcium stearate synergetic soap-induced thermal stabilization of poly(vinyl chloride) (PVC) were investigated by colorimetry. The remarkable stabilization effects of epoxidized polybutadienes could not be observed on the PVC films without synergetic soaps, while the stabilization of PVC was markedly enhanced by combined use of epoxidized polybutadienes with synergetic soaps. Excessive coloration of cool color-producing zinc chloride-polyene complexes that were the source of abrupt discoloration of stabilized PVC was retarded by using epoxidized polybutadienes together with synergetic soap. The synergism of epoxidized polybutadienes was enhanced with increasing epoxy contents. Moreover, the effect is also clearly dependent on degree of dispersion of epoxidized polybutadienes in PVC. Further colorimetries, infrared (IR), and X-ray photoelectron spectroscopies on the various PVC-containing epoxidized polybutadienes and zinc chloride indicated that the epoxy groups capture the zinc chloride. The synergistic effect between epoxidized polybutadienes and metal soap was ascribed to epoxidized polybutadienes serving as acceptors for the excessive cool color-producing zinc chloride produced by zinc stearate to retard the abrupt discoloration of stabilized PVC. The plate-out phenomenon appeared during the molding process of PVC-containing epoxy compounds was considerably retarded by epoxidized polybutadienes which modified polyols. The polyol-modifying epoxidized polybutadienes also exhibited a marked effect on PVC stabilization with metal soap.  相似文献   

5.
Discoloration such as zinc burning was observed in aged poly(vinyl chloride) (PVC) compounded with synergetic soaps. This discoloration was caused by excessive formation of cool color-producing π complexes formed between double bonds in polyene chain and zinc chloride or cadmium chloride produced from the corresponding metal soap. The appearance of excessive color of the π complexes was reduced by adding some masking agents into PVC admixed with synergetic soaps. In the present study differences in masking effects results by adding solid or an aqueous solution of aminopoly-carboxylates such as glycine, ethylenediaminetetraacetates, and nitrilotriacetates to PVC stabilized with zinc stearate/calcium stearate synergetic soap. The mechanism of synergetic effect between nitrogen-containing agents and synergetic soaps upon the stabilization of PVC is also investigated by colorimetry. The aqueous solution of aminopolycarboxylates exhibits a greater masking effect than the solid. The masking effect of aminopolycarboxylates depends on the ease with which they are fnely dispersed into PVC. Colorimetry indicated that the masking effect of aminopolycarboxylates and other nitrogen-containing agents depends on forming the colorless complex compound with the excessive cool color-producing metal chlorides.  相似文献   

6.
The marked discolorations observed on aged poly(vinyl chloride) (PVC) containing synergetic metal soaps, in the early heating stage, were due to the excessive coloration of π complex of metal chloride and double bonds in the polyene chain. These excessive colorations were inhibited by masking the excessive metal chloride with some masking agents, thereby slowing down the abrupt discoloration of PVC. In this paper, the masking effect of various alcohols such as 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, hexylene glycol, glycerol, 1,2,4-butanetriol, trimethylolethane, trimethylolpropane, meso-erythritol, pentaerythritol, sorbitol, and dipentaerythritol is investigated. The polyhydric alcohols, except dihydric alcohols, showed superior masking effect and markedly improved the thermal stabilization effects of synergetic metal soaps. The mechanism for the synergetic effects between polyols and metal soaps should be based on the masking effect of polyols, owing to the formation of the colorless complex of polyols with excess metal chlorides obtained from the metal soap.  相似文献   

7.
The stabilization of poly(vinyl chloride) (PVC) involving complementary colors has been previously reported. Obliterating polyene color with various dyes containing complementary colors with the polyene color is studied on the basis of colorimetry. The changes in the color of heated PVC containing Thren Blue IRN, Ceres Blue GN, Oplas Violet 730, Macro-Lex Violet 3R, Macro-Lex Green 5B, or Macro-Lex Red 5B were investigated using a differential colorimeter. When the PVCs containing various dyes were heated, the discoloration from the color of each dye to the color mixture of each dye and polyene color was observed with increased heating times for all systems. In particular, an achromatic color has been observed, during the heat treatments, in PVC containing blue dyes such as Thren Blue IRN or Ceres Blue GN, which set up complementary color relationship with the polyene color. Thus the color of polyenes, which appears with advancing dehydrochlorination of PVC, is masked by the blue dyes. It is also apparent that the obliteration of polyene color does not depend on the chemical influences of the dyes added, but by color mixing of polyenes and the dyes. Cool-color dyes markedly slow down the appearance of polyene colors.  相似文献   

8.
The synergistic effect of metal soaps (zinc stearate and calcium stearate) and/or natural zeolite (clinoptilolite) on PVC thermal stability was investigated. For this purpose, PVC plastisol was prepared by mixing poly(vinyl chloride) (PVC) and dioctyl phthalate (DOP) and stabilized with different amounts of metal soaps and zeolite. Kinetic studies of dehydrochlorination at 140 and 160°C were done for unstabilized and stabilized PVC plastigels using 763 PVC Thermomat equipment. The stabilizing effect of zeolite on the increase in the induction period of the sample was considered to result from the absorption of HCl, a property that was thought to reduce the autocatalytic effect of HCl evolved at the initial stages of dehydrochlorination. Since the induction time of the sample having 0.53% of zinc stearate and 0.53% of zeolite was higher than those of the PVC plastigels having only zinc stearate or zeolite, the synergistic effect on thermal stability was observed at low levels of these additives. J. VINYL. ADDIT. TECHNOL., 11:47–56, 2005. © 2005 Society of Plastics Engineers  相似文献   

9.
Uracil derivatives are potential nontoxic thermal stabilizers of poly(vinyl chloride) (PVC) and have a better stabilization effect. 5,6-diamino-1,3-dimethyluracil (DDU) was investigated as a thermal stabilizer for PVC. The stabilization effect of DDU was measured by thermogravimetric analysis, thermal aging test, and recording the time of the color change of the Congo red paper (Congo red test). Meanwhile, the processability of PVC stabilized by DDU was investigated through dynamic performance test. The results showed a better stabilizing effect compared with calcium stearate (CaSt2) and zinc stearate (ZnSt2). To explain the stabilization of DDU, the probable mechanism was suggested that DDU absorbed and chemically bonded with hydrogen chloride. Therefore, DDU could be used as a thermal stabilizer of PVC.  相似文献   

10.
Thermal degradation of poly(vinyl chloride) (PVC) was studied in nitrogen atmosphere in the presence of rubber seed oil and epoxidized rubber seed oil, barium and lead soaps of rubber seed oil, and epoxidized seed oil at various temperatures. The rate of dehydrochlorination at 1% degradation and the time required to attain 1% degradation were used to assess the effect of the thermal susceptibility of PVC to dehydrochlorination. It was found that epoxidized rubber seed oil, the metal soaps of rubber seed oil, and epoxidized rubber seed oil markedly enhance the thermal stability of PVC. The order of increasing stabilizing influence was metal soaps of epoxidized rubber seed oil > metal soaps of rubber seed oil > epoxidized rubber seed oil > rubber seed oil. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
A type of lanthanide (La(III))‐containing ionomer based on acrylate processing aid (ACR) for poly (vinyl chloride) (PVC) was synthesized, and influence of the ionomer on thermal stabilization of PVC was investigated with visual color comparison and Congo red methods. Results revealed that the ionomer with a suitable La(III) content behaved as a good costabilizer to PVC. It was able to extend static stabilization time of PVC and postpone “zinc burning.” The stabilizing efficiency of the ionomer to PVC depended on ion content, which was discussed in terms of Eisenberg–Hird–Moore model. Moreover, Fourier transform infrared test verified that this ionomer can react with zinc stearate (ZnSt2) to form some new structures, which is responsible for postponing “zinc burning.” The ionomer and epoxidized soybean oil exhibited a synergistic effect on the stabilizing efficiency of calcium stearate (CaSt2)/ZnSt2 stabilizer to PVC compounds. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
In this study, the effect of activator ZnO and heating time at 190°C on foaming, gelation, and dehydrochlorination of poly(vinyl chloride) (PVC) plastisol was investigated. For this purpose, a PVC plastisol was prepared by mixing PVC, dioctyl phthalate (DOP), azodicarbonamide (ADC), ZnO, and the heat stabilizers calcium stearate (CaSt2) and zinc stearate(ZnSt2). PVC plastisol films were heated for 3, 6, 12, and 24 min periods at 190°C to see the effect of heating time on the gelation and foaming processes of the PVC foam. The time of 12 min was determined to be optimum for the completion of gelation and foaming processes without thermal degradation of PVC. No foaming was observed under the same conditions for the samples without ZnO. ZnO had a significant catalytic effect on ADC decomposition, accelerating the foaming of the films. Average porosity measurement showed a consistent increase in porosity with heating time up to 76% and the average density decreased from 1.17 to 0.29 g/cm3 on foaming. Tensile tests showed that the tensile strength and tensile strain both increased considerably up to 0.98 MPa and 207%, respectively, with heating time and the elastic modulus was seen to gradually decrease from 4.7 to 0.7 MPa with heating time. Films without ZnO had higher tensile strength since there were no pores. PVC thermomat tests showed that ZnO lowered the stability time of plastigel film with azodicarbonamide. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
As a preliminary treatment in the PVC-electroplating procedure, treatment with dimethylformamide followed by sensitization leads to a finely roughened and a highly hydrophilic surface with reducing power. This is caused by the formation of an ionic complex compound between dimethylformamide and tin(II) chloride absorbed in the PVC surface. A much more finely and deeply etched surface which exhibits higher adhesion through the mechanical interlocking effect is obtained with the PVC blends containing the plasticizer with a low value of interaction parameter and with a solubility parameter approximate to that of PVC. Adhesion of the metal layer to the PVC surface thus obtained is improved about 1.5 times by thermal aging at 120°C for 20 min.  相似文献   

14.
A synergistic effect of synthetic hydrotalcites as long term stabilizer with metal soaps (the mixture of calcium and zinc stearate) and metal acetylacetonates on dehydrochlorination of PVC has been studied. A proper balance between color stabilization and HCl scavenging capacity has been obtained. Hydrotalcite was prepared by hydrothermal treatment and characterized by EDX, XRD, FTIR, TGA, and SEM techniques. The material is reasonably crystalline and suggests a relatively well ordered sheet arrangement with crystallite size 24.87 nm. The interlayer water content was calculated from the TGA curves and the suggested formula is Mg0.76 Al0.24(OH)2(CO3)0.12·0.5H2O. Synergism in PVC stabilization has been studied by measuring the HCl evolution during the processing at 180°C. Oven aging method was used to study the color stabilization at higher temperature. PVC sheet with different formulation was prepared using Labcoater and subjected to oven for different time interval. The color development (polyene formation) on oven ageing was recorded using UV–visible spectroscopy. UV–visible studies shows that an average sized polyene gives pale yellow color, whereas red or brown color was developed due to long range polyene (n = 10–14) sequences. Hence, the HCl evolution depends on the rate of dehydrochlorination but color depends on the kind of polyene formed. Mechanism of stabilization suggests that adsorption and ion exchange, both phenomenon, are responsible for hydrotalcites as long term stabilizers. The acetylacetonate complex too substitute allylic chlorides and inhibit formation of long polyene responsible for darkening. A clear effect of synergism has been observed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
This paper addresses a phenomenon of color shift found during the development of a colored poly(vinyl chloride) (PVC) compound for exterior automotive application containing, among other pigments, red anthraquinone (C.I. Pigment Red 177) and titanium dioxide (TiO2). Color was found to shift about 2 points delta b* on a CIELAB scale from yellow to blue during the first one month and a half since the compound had been processed. The shift took place at the regular conditions: room temperature with no exposure to sunlight or heat.  相似文献   

16.
The influence of relatively nontoxic thermal stabilizers including different types of organic calcium complex (Ca/Zn system of liquid stabilizers) and organotin on photodegradation of poly(vinyl chloride) (PVC) was investigated by color difference measurement, viscosity‐average molecular weight determination, UV–vis spectroscopy, Fourier transform infrared (FTIR), and thermogravimetric (TG) analysis. PVC films containing relatively nontoxic thermal stabilizers were prepared by solution casting and then exposed to xenon‐arc light source with the irradiance of 0.51 W/(m2·nm) at 65°C. Two major chain processes, photodehydrochlorination and photo‐oxidation, occur simultaneously during photodegradation of PVC. It has been confirmed by both color difference and UV–vis spectra that during the former 300 h of irradiation, organic calcium complex stabilizers retard photodehydrochlorination as well as initial color development of PVC films while organotin stabilizers remarkably accelerate photodehydrochlorination after 100 h. Relative carbonyl index (RCI) is first introduced to the analysis of FTIR results, which implies that organotin has a better ability to inhibit photo‐oxidation than organic calcium complex and ensures longer stabilization time. The antioxidation of mercaptan organotin has been observed because it is an effective decomposer of peroxides and hydroperoxides. TG analysis reveals that some unstable structures generated due to the irradiation of ultraviolet can easily split away off from PVC macromolecular backbones under relatively low temperature. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

17.
Main results of research on poly (vinyl chloride) (PVC) stabilization are discussed. Stabilization is viewed from the standpoint of the modern notions of the reasons for PVC low thermal stability, the complicated nature of its dehydrochlorination, and the kinetics of its degradation. The internal unsaturated oxygen-containing groups of ~C(O)? CH?CH? CHCl~ type are regarded as the main source of the polymer instability. Typical processes resulting in PVC stabilization, such as the substitution of labile chlorine atoms and the destruction of initial active sites during reactions with various chemical agents, as well as the kinetic aspects of stabilizers' effect on HCl elimination and PVC macromolecules crosslinkage are considered. The influence of additives on the polymer coloration is estimated.  相似文献   

18.
Zinc glycerolate (ZnGly) was prepared and used as a poly(vinyl chloride) (PVC) thermal stabilizer in this work. ZnGly was characterized by Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), thermogravimetry (TGA), and transmission electron microscopy (TEM). Visual color evolution and thermal stability time at 180°C were used to examine the stabilizing efficiency of the samples. The thermal stability of PVC was significantly enhanced through adding ZnGly or ZnGly with lanthanum stearate (LaSt3). Compared with zinc stearate (ZnSt2), it was demonstrated the initial color stability was markedly improved and the thermal stability time was obviously extended by adding ZnGly. The thermal stability time of ZnGly was threefold than ZnSt2. In comparison with CaSt2/ZnSt2, the extent of coloration of PVC samples was significantly inhibited though adding LaSt3/ZnGly. It was verified that the appropriate percents of ZnGly in the mixture were between 25 and 50%. A possible mechanism for the stabilizing efficiency of ZnGly was also proposed. The stabilizing efficiency was attributed to the stabilizer's ability to absorb hydrogen chloride and replace the labile chlorine atoms on PVC chains. Moreover, the dynamic thermogravimetric analysis was used to confirm that combination of LaSt3 with ZnGly presented an obvious improvement of stability on thermal degradation of PVC. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
The GHCl values of PVC foils, containing 18% of dioctylphthalate, irradiated with accelerated electrons were studied after addition of various amounts of the stabilizers: (I) ethylene glycol bis-β-aminocrotonate, (II) calcium/zinc laurate + epoxy compounds, (III) calcium/zinc stearate, (IV) dioctyltin bis(octylthioglycolate). The effect of stabilization turned out to be very good, especially when stabilizer I was used. In the case of soft PVC foils in contact with water, elution of hydrogen chloride occurs. This creates difficulties in preparing PVC foils sterilized radiatively for medical purposes, especially if the foils are expected to be in contact with water.  相似文献   

20.
The effect of N,N-dialkyl dithiocarbamate substitution on the radiation stability of poly(vinyl chloride) (PVC) film was studied. PVC containing 6.5–15.7 mole-% N,N-dimethyl dithiocarbamate (PDM) and PVC containing 8.3–17.5 mole-% N,N-diethyl dithiocarbamate (PDE) was irradiated with γ-rays from a Co-60 source at room temperature under vacuum. The evolved gaseous products were measured and analyzed with a mass spectrometer. The apparent G values for gas evolution of PDM and PDE decreased remarkably. For example, a G value of 0.10 was obtained for a PDE which contains 17.5 mole-% diethyl dithiocarbamate group. The mass spectrum of the evolved gas from the same PDE sample with 10-Mrad irradiation showed no hydrogen chloride to be present. The external protection was studied using polymer-blended films of PVC and PDE or PDM. The stabilization coefficients for internal protection and external protection in polymer blends were calculated. Although the ESR spectrum of the irradiated PDM, PDE, and PVDE which is synthesized by polymerization of S-vinyl-N,N-diethyl dithiocarbamate (VDE) showed the same sulfur radicals, they were different from those of the irradiated cysteamine hydrochloride and PVC containing N-methyl dithiocarbamate (PMD). From these results, the protection of a polymer by a covalently bound dithiocarbamate was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号