首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
2.
提出了一种新的基于聚类算法和遗传算法相结合的入侵检测方法模型.算法对聚类的中心采用二进制编码,将网络的正常行为和非正常行为分为不同的类,把每个点到它们之间的各自的聚类中心的欧几里得距离的综合作为相似度量,然后采用粒子群优化算法,有效的降低网络拓扑路径长度,通过优化算法来寻找聚类的中心.Matlab仿真实验结果表明,提出的改进的网络异常检测方法,与较传统网络入侵检测系统模型相比,具有更好的入侵识别率和检测率,同时提高了算法的执行效率.  相似文献   

3.
针对传统智能视频监控系统不能及时准确地发现危险或者发现危险不能及时报警的问题,提出一种基于模糊迭代自组织数据分析聚类结合直方图熵值算法的异常行为智能检测方法。该方法通过模糊迭代自组织数据分析聚类方法获取视频关键帧,根据分类结果采用直方图熵值法对异常行为进行判断。实验结果表明,所提算法可以对具有复杂背景的监控区域有效地实现人体的检测,并且能准确地识别出人体异常的动态行为,有效地减少了住宅小区和养老院的安全隐患。  相似文献   

4.
探索一种基于聚类来识别异常的方法,这个方法不需要手动标示的训练数据集却可以探测到很多不同类型的入侵行为.实验结果表明该方法是可行的和有效的,使用它来进行异常检测可以得到探测率和误报率的一个平衡,从而为异常检测问题提供一个较好的解决办法.  相似文献   

5.
基于进程行为的异常检测模型   总被引:1,自引:0,他引:1       下载免费PDF全文
苏璞睿  冯登国 《电子学报》2006,34(10):1809-1811
利用系统漏洞实施攻击是目前计算机安全面临的主要威胁.本文提出了一种基于进程行为的异常检测模型.该模型引入了基于向量空间的相似度计算算法和反向进程频率等概念,区分了不同系统调用对定义正常行为的不同作用,提高了正常行为定义的准确性;该模型的检测算法针对入侵造成异常的局部性特点,采用了局部分析算法,降低了误报率.  相似文献   

6.
周冬  苏勇  黄烨 《信息技术》2013,(3):168-171
传统异常检测技术是基于距离和密度的,快速的异常检测算法过分依赖于索引结构或网格划分,在低维数据上有很好的效果;面对高维数据的稀疏性、空空间现象等特性,索引结构失效,网格划分的数目呈指数级增长,传统算法性能下降;文中采用信息熵确定高维数据异常子空间,在异常子空间上使用DBSCAN聚类算法,在高维数据异常检测中表现出较好的性能。  相似文献   

7.
基于改进CURE聚类算法的无监督异常检测方法   总被引:4,自引:0,他引:4  
提出了一种基于改进的CURE聚类算法的无监督异常检测方法.在保证原有CURE聚类算法性能不变的条件下,通过对其进行合理的改进获得更加理想的簇,也为建立正常行为模型提供了更加纯净的正常行为数据.在建模过程中,提出了一种新的基于超矩形的正常行为建模算法,该算法有助于迅速、准确地检测出入侵行为.实验采用KDDcup99数据,实验结果表明该方法能够有效地检测网络数据中的已知和未知入侵行为.  相似文献   

8.
针对水文行业对数据异常模式检测的实时性要求,提出一种基于特征向量的两阶段异常检测方法。先提取时间序列特征形成符号化的特征向量,再使用改进的K-means方法进行聚类,最后用改进的INN对聚类结果进行评估并将聚类后得到的类簇设成相应特征模型。实验表明,该方法实现了对字符串序列的高效准确的聚类,有效检测出异常模式。  相似文献   

9.
为提高挖掘结果与对应异常数据类型之间的关联度,确保挖掘结果能够为网络平台异常状态识别提供有力依据,文章引入改进聚类算法,开展网络平台异常数据挖掘方法设计研究.通过基于改进聚类算法的网络平台运行数据分类、网络平台异常检测、网络平台分布式最大频繁序列提取、最大频繁序列数据比对与挖掘,提出一种全新的挖掘方法.通过对比实验结果...  相似文献   

10.
针对网络异常检测领域存在的漏报率和误报率较高的问题,提出一种基于K—means聚类的网络流量异常检测方法。选择了多个不同维度上的特征;计算各维特征在滑动窗口中的局部均值偏差,以保证在实时动态变化的网络中的检测准确度;利用由K—means聚类算法产生的检测模型对各维特征进行综合评判,有效地降低了漏报率和误报率。在网络流量数据集上对所提方法进行了验证并和已有方法进行了对比,所提方法在精度和效率方面取得了较好的实验效果。  相似文献   

11.
传统识别模型在进行人体异常行为识别时,无法准确地定位到识别目标的IP地址与目标源.针对此问题,设计了一种基于循环神经网络的人体异常行为识别模型.根据人体异常行为在循环神经网络中的传播方式,计算人体规律性异常行为、重复性异常行为在网络中占用的流量,并通过Lex.net技术提取网络规则,对比人体行为执行规则与循环神经网络规则,描述人体异常行为网络执行规则;同时,引进CNN标记方式,对异常信息进行标记,引入卷积神经网络标记异常信息,将标记结果按照高语义特征与低语义特征,以此实现对行为的有效识别.实验证明,本文设计的识别模型,可以在有限时间内输出所有人体异常行为,并能在完成对异常行为的识别后,追踪到行为对应的目标个体.  相似文献   

12.
实现对人群异常事件的检测是图形处理在智能视频监控领域的重要研究内容.提出了一种基于运动相似性熵(EMS)的人群异常行为检测算法.该算法在对视频图像进行光流计算的基础上,以底层光流块为基本单位获取场景运动信息,根据社会网络模型的概念,提出构建场景的运动网络模型(MNM),完成对场景粒子运动相似性的划分,并在时间域上计算MNM的粒子分布熵值EMS,最后将得到的图像熵与设置合理的阈值相比,判断异常行为是否发生.实验证明,该算法可有效检测异常行为,与其他经典检测算法相比有较大优势.  相似文献   

13.
为了减少5G异构网络中不必要的小区切换次数以及降低无线链路失败率,提出了一种基于熵权优劣解距离法(Technique for Order Preference by Similarity to an Ideal, TOPSIS)的小区预切换方案。熵权TOPSIS法将小区作为预切换对象,将下行信干噪比、预测驻留时间和移动角度均作为切换指标,分析并预测目标切换小区从而达到预切换目的。首先,根据邻小区的参考信号接收功率(Reference Signal Receiving Power, RSRP)值得到候选目标小区列表;然后,采用熵权法计算三个切换指标的权重;最后,使用TOPSIS法对候选小区进行排序,排序最高的小区即为目标切换小区。实验和仿真结果表明,与现有的切换方法比较,所提方案在一定程度上减少了小区切换次数和无线链路失败率。  相似文献   

14.
在众多的模糊集中,直觉模糊集同时定义了信任度、非信任度和犹豫度,便于处理不确定信息.在不确定信息应用领域的背景下,重点研究了直觉模糊环境下的聚类问题,提出了基于相对熵的直觉聚类方法,并通过数值算例验证了方法的可行性和有效性.  相似文献   

15.
周胜利  徐啸炀 《电信科学》2021,37(2):125-134
网络行为被害性分析对于电信网络诈骗犯罪的防控具有深远意义。通过研究用户与网站交互产生的网络流量,提出一种基于网络流量分析的电信网络诈骗犯罪用户网络行为被害性识别模型,分析不同网络行为特征之间的关联规则,重构网络行为序列特征,同时结合随机森林算法评估网络行为的被害性。在被害人网络行为数据集基础上进行实验,证明模型能够有效提升网络行为被害性识别准确率。  相似文献   

16.
《现代电子技术》2017,(7):183-186
对电力客户进行价值分析,有利于全面了解客户,为电力客户提供差异化服务。同时也可以提高客户满意度,实现供电企业、客户双赢的局面。运用数据挖掘方法对电力客户价值分类,构建电力客户价值评价指标体系,这些指标涵盖客户的用电行为、缴费行为、舆情和行业发展状况等,运用熵权法计算指标的权重,提出一种改进的PCA聚类算法对电力客户价值进行分类,为供电企业制定差异化服务策略提供辅助支撑。  相似文献   

17.
《现代电子技术》2016,(23):116-120
校园网中的服务器存有海量的用户访问日志文件,记录了校园网用户的访问信息。鉴于此,提出了一种基于聚类算法的校园网用户行为分析技术,设计和实现了数据预处理系统,对日志数据进行一系列的清理、合并,标准化等预处理,使其更好地适应后续的聚类操作。将预处理后的数据作为输入数据,分别实现了三种常用的聚类算法对日志数据进行聚类,然后从聚类准确率和聚类速度两个角度对现有算法进行优化。为了提高聚类准确率,提出了用K-均值算法结合AGNES算法的方法;为了提高聚类速度,在MPICH2平台上设计和实现了并行K-均值算法,实现多机并行分析,最后简单介绍了校园网行为分析系统的应用。  相似文献   

18.
陆勰  徐雷  张曼君 《电信科学》2021,37(9):112-117
基于5G网络环境,提出了一种基于K-means聚类的安全分级虚拟网络映射方法,特别涉及一种对节点安全分级的思想,结合K-menas聚类算法,解决当下虚拟网络映射存在的低安全性、低映射效率等关键问题,与传统方法相比,所提方法提高了虚拟节点映射的效率,增强了网络韧性。  相似文献   

19.
《现代电子技术》2016,(7):29-32
高校网络管理部门在运行管理过程中积累了大量用户上网行为数据,对用户上网行为进行整理分析将能掌握用户上网习惯、规律,科学有效地制定上网管理策略。以一具体高校为例,通过对用户上网数据进行预处理,抽取相应字段构建分析数据集,通过图表形式对上网登录时间进行统计展示。以上网时长为指标值,分别使用K-均值聚类与Kohonen神经网络聚类方法对上网记录进行聚类分析,得到聚类结果。结合用户信息,以用户与上网记录的对应准则作为判断聚类效果的准则,对两种聚类方式得到的结果进行比较,选择合适的结果。结合计算结果对实验单位的上网情况进行分析,对上网管理策略提出建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号