首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Rational scale-up of fluidized beds to commercial size requires an understanding of the operation of the grid support plate. One aspect of grid behavior has been studied experimentally; namely, the momentum dissipation of vertical air jets within an 11 inch diameter bed of fluidized cracking catalyst. Nozzle diameters were varied from ¼ to 1½ in. and nozzle velocities from 50 to 300 ft./sec. The data have been found to fit a general correlation relating the normalized axial momentum of the jet to a modified Froude number. The significance of the correlation to the process and design engineer is briefly discussed.  相似文献   

2.
Plunging jet systems have been studied with regard to CO2 absorption in water. The dependence of the absorption rate on the nozzle diameter, liquid velocity and jet length has been investigated.A theoretical model able to predict the overall mass transfer coefficient over the whole range of experimental conditions has been developed. The following relationship has been obtained in terms of dimensionless groups: Sh = 594 We1.13(H/dn)0.43. Furthermore, the model gives the morphology of the jet in the submerged two-phase region.  相似文献   

3.
Mass transfer from a fluidized bed electrolyte containing inert particles has been found to depend on bed porosity and particle size. The optimum porosity was found to vary from 0.52 – 0.57 with decreasing particle size but mass transport increased with particle size.A mass transfer entry length effect was observed on the cylindrical cathode but its position within the bulk of the bed was found not to be critical, thus indicating that the hydrodynamic entry length was small. The limiting current density was found to vary as (d e/L e)0.15 whered e is the annular equivalent diameter andL e the electrode length.List of symbols ReI modified Reynolds No. =U o d p /v(1–) - ReII particle Reynolds No. =U o d p /v - ReO sedimentation Reynolds No. =U i d p v (constant value) - Ret terminal particle Reynolds No. =U t d p /v - Sc Schmidt No. =v/D - StI modified Stanton No. =k L /U o - C b bulk concentration, M cm–3 - D diffusion coefficient, cm2 s–1 - d t tube diameter, mm - d e electrode equivalent diameter, mm - d p particle diameter, mm - bed porosity - zF Faradaic equivalence - cd current density - i L limiting current density, mA cm–2 - i LO limiting current density in the absence of particles - k L mass transfer coefficient, cm s–1 - L e electrode length, mm - m, n constants or indices - v kinematic viscosity, cm2 s–1 - U o superficial velocity, cm s–1 - U i sedimentation velocity, cm s–1  相似文献   

4.
A grid model including thermal effects is proposed. The aim is the simulation of a fluidized catalytic cracking regenerator similar to the industrial unit of Destileria La Plata, YPF, Argentina. It is demonstrated that a simple C.S.T.R. model without bypass of gas feed entering the bed provides a good approach for representing the fluidized bed including the grid region. In addition, by means of the C.S.T.R. model, it is shown that there exist two characteristic operating regions: a zone where (Coo – Co) depends on the initial coke concentration and a zone where (Coo – Cc) is controlled by oxygen supply.  相似文献   

5.
The gas holdup and gas entrainment of a plunging liquid jet with a gas entrainment guide in an air-water system was investigated. The measurement of the gas holdup was performed using an over-flow method. The turbulent jet velocity calculated on an inside nozzle diameter in the range from 4.4-26.5 m/s for this system has been used in our correlations. The gas holdup has been well correlated in terms of 1/H(v02 + 2gH1), H1 d0 and the gas entrainment in terms of 1/Hw(v02 + 2gH1), H1, d0. The jet power requirement was also obtained from experimental data.  相似文献   

6.
BACKGROUND: Jet mixing is one of the simplest methods to achieve mixing. There have been a number of experimental studies concerned with jet mixing; some of these studies report empirical correlations. The existing correlations are not useful where there are significant deviations from the idealized conditions. Most correlations reported in the literature deal with liquid flow with single or multiple jets, whereas the effect of radial angle on mixing time was not studied. This present study investigates the effect of operating parameters on experimental mixing time in a double jet mixer. Nozzle configuration for jet1 was fixed based on earlier studies (2/3rd position, nozzle angle 45° and nozzle diameter 10 mm). Mixing times were estimated for different jet2 configurations of jet angle (30°, 45° and 60°), radial angles (60°, 120°, 180°), jet diameter (5 mm and 3 mm) and located at different tank heights (2/3rd and 1/3rd from the bottom of the tank). RESULTS: A mixing time correlation was developed in terms of all the parameters using dimensional analysis. The constants and powers of the parameters involved in the correlation developed were estimated using a least square method to calculate the straight line that best fitted the mixing time data obtained during the experiments. The effects of change in angle of inclination of jet2 (θ2), radial angle of jet2 with respect to jet1 (Φ2) and diameter of jet2 (d2) on mixing time were analyzed and compared with the experimental mixing time. CONCLUSION: The correlation developed based on the dimensional analysis and least square method predicts the mixing time for a double jet mixing tank. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
A grid model describing the gas flow and interchange in the grid zone of jetting fluidized beds is proposed. Based on this model, longitudinal gas concentration profiles in the jet and annulus are calculated. The longitudinal gas concentration distribution is also experimentally investigated in a jetting fluidized bed with an inside diameter of 50 mm at the ambient temperature, and a jetting fluidized bed with an inside diameter of 80 mm at high temperatures. Comparison between the calculated and experimental results has shown that the experimental profiles can be qualitatively predicted by the grid model. The results indicated that the concentration in the grid zone depends on the gas exchange between the jet and the annulus, and the net gas flow from the jet to the annulus. The gas exchange rate is mainly affected by the inlet gas velocity from the nozzle. The present study is thought to be helpful to understand the grid gas behavior in the jetting fluidized bed coal gasifier.  相似文献   

8.
Volume of fluid and continuum surface force methodologies were applied to two‐ and three‐dimensionally model the motion of a liquid jet injected vertically downward from a rectangular nozzle into another immiscible liquid. Grid independent solutions were obtained for a 10 mm2 nozzle with aspect ratios in the range 1–10. It was found that unlike the 3D simulation, the 2D CFD model was not able to predict the necking and breakup features observed in the experimental system. The 3D model showed that upon exiting the rectangular nozzle the liquid jet underwent a transition before becoming circular in cross‐section and eventually reaching an equilibrium diameter prior to breakup into droplets. For a given nozzle geometry it was found that equilibrium jet diameter increased with increasing liquid volumetric flowrate, with good agreement between CFD simulations and experimental observations. The 3D model was applied to rectangular nozzles with different aspect ratios and it was found that for a given liquid flowrate there was an optimum aspect ratio for generating minimum‐sized droplets, which was approximately 30% less than for a circular nozzle with the same cross‐sectional area. © 2011 Canadian Society for Chemical Engineering  相似文献   

9.
Decolourisation of a dilute solution of a basic dyestuff was carried out by using hardwood sawdust as adsorbent. At 80°C 85% decolourisation occurred within 100 min at an initial concentration (Co) of 200 mg dm?3. There was a 44% reduction in contact time when the temperature was raised from 25 to 80°C. The rate parameter for different initial dye concentrations was found to follow the equation: kco=4.20Co0.88 and the rate parameter for different mean diameter dm followed the equation kdm=4.1 (l/dm)0.135. The activation energy of the process was 9.83 kJ mol?1 which shows that the rate controlling step is intraparticle diffusion.  相似文献   

10.
In this paper we present new experimental data on the steady-state, mean squared, fluctuation velocity, or granular temperature, of Geldart B polymer, glass, nickel, and stainless steel monodispersed spheres averaged over the wall of a gas fluidized bed, as a function of gas flow and sphere diameter. The granular temperature is obtained by Acoustic Shot Noise technology—namely power spectral analysis of the steady state vibrational energy of the wall excited by random sphere impact, and calibrated by hammer excitation over the wall. The new data extends to polymer and metallic spheres the experimental discovery of a 1996 paper of Cody et al. that the fluctuation velocity of Geldart B glass spheres when scaled to the gas superficial velocity, Us, is inversely proportional to sphere diameter, directly proportional to a fundamental length scale, DoB, and is a universal function of U = (Us / Umf). We also demonstrate that the new data is consistent with the diameter dependence of the fluctuation velocity that can be derived from both the 1997 paper of Menon and Durian, who measured random sphere motion near the wall through the spectroscopy of scattered laser light, and the 1992 paper of Rahman and Campbell, who measured the average granular pressure of random sphere impact on a porous steel membrane. While the inverse scaling of the fluctuation velocity with sphere diameter, and the existence of a fundamental length scale for gas fluidization, DoB, had not been a feature of any published fundamental model, or computer simulation, of the steady state granular temperature of spheres in gas fluidized beds, we show that it is a feature of two recent dense kinetic fluidization models published in 1999, by Buyevich and Kapbasov, and Koch and Sangani. Both theories implicitly define a fundamental length scale for the fluctuation velocity, D? = (μf2 / ρp2g)1 / 3, where ρp is the sphere density, μf is the gas viscosity, and g is the laboratory gravitational field. The new data for polymer, glass, nickel and stainless steel spheres presented in this paper, defines DoB = (56 ± 2)D?. We use the Anderson-Jackson stability model to show that the length scale DoB, also defines a stability length scale, such that for D < DoB(D > DoB), the uniform dense phase of the fluidized bed is stable (unstable), against one dimensional, first order fluctuations in sphere concentration. The length scale, DoB is thus the theoretical equivalent to the empirical scaling length introduced by Geldart, DB/A, to distinguish spheres (D > DB/A) that bubble at fluidization, from spheres (D < DB/A) that fluidize before bubbling. Finally, we present new experimental data, on the remarkable changes in the granular temperature, bed expansion, and bed collapse time, between Geldart B and Geldart A monodispersed glass spheres, and compare that data to granular temperature, and bed expansion, for Geldart A rough, non-spherical, log-normal dispersed diameter catalytic particles.  相似文献   

11.
Chi Wang  Chia-Hung Hsu  I.-Hwe Hwang 《Polymer》2008,49(19):4188-4195
Using chloroform/dimethylformamide (CF/DMF) co-solvent, electrospinning of poly[(R)-3-hydroxybutyrate] (PHB) solutions was carried out at ambient temperature. The effects of the applied voltage (V), flow-rate (Q), and solution viscoelastic properties on the Taylor cone, electrified jet, and fiber morphology were investigated. In addition, the electric field developed by the needle-plate electrode configuration was calculated using a finite element analysis to reveal the tip-to-collector (H) effect. Among the processing parameters (V, Q and H), it was found that Q played a key role in determining the jet diameter (dj) and electrospun fiber diameter (df), and scaling laws existed between them, i.e., dj-Q0.61 and df-Q0.33. The diameter reduction ratios of Do/dj (Do is the needle diameter) and dj/df were measured as 50-120 and 5-10, respectively; it suggested that major jet stretching took place in the straight electrified jet region, and further chain orientation could be gained by the subsequent process of jet whipping. By changing PHB concentrations from 5 to 15 wt%, the solution viscosity (ηo) was increased from 100 to 4900 cP, whereas the surface tension and solution conductivity remained unchanged; it provided a good model solution to exclusively reveal the ηo effect on the electrospinning process. Our results showed that the ηo-dependence of dj and df also followed simple scaling laws: dj-ηo0.06, and df-ηo0.39, with a prefactor depending on the processing variables, mainly the flow-rate. Regardless of the PHB concentrations used, the obtained PHB fibers showed a similar crystallinity fraction of ca. 0.63 and possession of major α-crystals together with a small amount of β-crystals with zigzag chain conformation.  相似文献   

12.
圆形自由水射流冲击换热及喷嘴布置   总被引:2,自引:1,他引:1       下载免费PDF全文
柳翠翠  姜泽毅  张欣欣  张成  马强 《化工学报》2011,62(5):1275-1281
引言 水射流冲击冷却由于具有较高的换热能力,广泛应用于机械和化工行业,以实现工件的快速冷却和控制工件的温度变化.在大型轴类工件(工件直径D=1000~3000 mm)喷水冷却装置中,多喷嘴圆孔自由水射流以特定阵列布置冲击至工件表面,相对短暂的沸腾换热结束后,阵列自由水射流即以强制对流方式实现工件冷却.因此,自由水射流冲击换热特性及多喷嘴布置形式对喷水冷却装置的结构设计至关重要.  相似文献   

13.
Jet penetration depth in a two-dimensional spout-fluid bed   总被引:1,自引:0,他引:1  
The jet penetration depth was proposed to be an important parameter to describe the jet action during the chemical process of spout-fluid bed coal gasification. A two-dimensional cold model of a spout-fluid bed coal gasifier with its cross section of and height of 2000 mm was established to investigate the jet penetration depth. Four types of Geldart group D particles were used as bed materials. A multi-channel pressure sampling system and a high-resolution digital CCD camera were employed for experimental investigations. The effects of spouting gas velocity, spout nozzle diameter, static bed height, particle property and fluidizing gas flow rate on the jet penetration depth have been systematically studied by pressure signal analysis and image processing. Experimental results indicate that the jet penetration depth increases with increasing spouting gas velocity and spout nozzle diameter, while it decreases with increasing particle density, particle diameter, static bed height and fluidizing gas flow rate. Additional, a new correlation considered all of the above effects especially static bed height and fluidizing gas flow rate, was developed for predicting the jet penetration depth in spout-fluid beds. The correlation was compared with published experimental data or correlations, which was in well agreement with the present experimental results and some other references.  相似文献   

14.
A crosslinked polyurethane foam has been used as the stationary phase in inverse gas chromatography to measure the solubility parameter (δ2) of the polymer at several temperatures (T) within the range 298–383 K. Values of δ2 = 29.5(MPa)1/2 at 298K and dδ2/dT = ?0.06(MPa)1/2 K?1 were yielded. Linear decreases with temperature of the solubility parameters (δ1) of water, ethanol and methanol were obtained by calculation from relevant properties of the liquids. The results were used to assess the conditions for the polyurethane foam to act as a non-interacting barrier against liquids of different polarities for which the criterion is that |δ1 ? δ2| should be large. The findings highlight the need to consider both the nature of the liquid and the temperature regime.  相似文献   

15.
With the microdroplets of water serving as light scattering particles, the mist flow patterns of round micro-jets can be visualized using the Aerosol Jet® direct-write system. The visualization images show that the laminar mist jet (with sheath-to-mist ratio Y?=?1:1) appears to extend to more than 20 times the diameter of nozzle orifice D for jet Reynolds number Re?<?600, especially with D?=?0.3?mm and less. For smaller jets (e.g., with D?=?0.15?mm), laminar collimated mist flow might be retained to 40×D for Re?<?600 and for Re ~1500 within 20×D from the nozzle. The laminar part of mist flow associated with larger jets (e.g., with D?=?1.0?mm for Re?<?600) tends to exhibit noticeable gradual widening due to viscous diffusion. For free jets, their breakdown length—the distance from nozzle where transition from laminar to turbulent mist flow takes place as signaled by a rapid widening of mist stream—is shown to decrease with increasing Re. The presence of impingement wall tends to prevent turbulence development, even when the wall is placed further downstream of the free-jet breakdown length for a given Re. The critical Re for an impinging jet to develop turbulence increases as the standoff S is reduced. The mist flow of impinging jet of D?=?1.0?mm seems to remain laminar even for Re?>?4000 at S?=?12?mm.

Copyright © 2018 American Association for Aerosol Research  相似文献   


16.
The oxygen transport properties and chemical stability of PrBaFe2O5+δ (PBF) double-perovskite oxide were systematically investigated as a chemically stable, highly oxygen-permeable membrane and solid oxide fuel cell (SOFC) electrode under a CO2-containing or reducing atmospheres. The oxygen permeation flux of 0.7 mm-thick samples and the oxygen ion conductivity were 4.7 × 10?1 mL?cm?2 min?1 and 0.12 S?cm?1 at 900 °C, respectively, which are comparable to those of PrBaCo2O5+δ, exhibiting the most superior performance among oxides with a double-perovskite structure. Moreover, the bulk diffusion and surface exchange coefficients estimated from the electrical conductivity relaxation analysis were generally comparable to those of PrBaCo2O5+δ. The characteristic thickness estimated from the membrane and conductivity relaxation tests was ~0.6 mm at 900 °C. The results indicate the significant influence of the surface exchange reaction on the permeability within a thickness of 0.5–1.7 mm. The PBF double-perovskite oxide exhibited superior chemical stability, compared to typical oxides such as PrBaCo2O5+δ under a CO2-containing atmosphere. All results suggest that PrBaFe2O5+δ exhibits high oxygen diffusivity with high chemical stability under CO2-containing or reducing atmospheres.  相似文献   

17.
It is shown that the presence of a “slotted draft tube” results in reduced air requirements for spouting and improved drying performance. Experimental data are presented on batch as well as continuous spouted bed drying of wheat, paddy, maize and peas. The variables studied are feed moisture content (Qo), inlet air temperature (To), bed mass hold-up (Mp), inlet superficial air velocity (uo) and bed diameter (Dc) in batch drying, and the above variables and solids feed rate (Fs) in continuous drying. The data on average overall drying rate, ?m, in kg moisture evaporated per unit time per kg bed solids, is found to be correlatable as ?m, = k (50Qo + 0.118To ? 12.5) 10?5, and the single parameter k is presented for wheat, paddy, maize and peas for both batch and continuous modes of spouted bed drying. The correlation obtained should be useful in dryer design for the grains studied as well as for other similar materials.  相似文献   

18.

An axisymmetric turbulent air jet flow (with vertical and downward orientation) laden with fluorescent solid particles was impinged normally onto a flat surface. The particle deposition efficiency and distribution on the flat surface were measured experimentally using fluorometry and imaging techniques. The fluorescent particles (5.0 μm diameter) were dispersed by a nebulizer and injected in a stream of compressed air, resulting in a steady flow (Q = 111 L/min). A round nozzle was used to generate a jet characterized by a Reynolds number of Re = 10 4 , based on the nozzle diameter (D = 15.0 mm) and nozzle exit velocity (u = 10.5 m/s). Three dimensionless distances from the nozzle's exit to the impaction surface, L/D = 2, 4, and 6, were investigated. It was observed that although having similar total deposition efficiencies (16.5–17.8%), shorter nozzle to surface distances (L/D = 2 and 4) show a more pronounced ring-like radial deposition pattern around the stagnation point. These shorter distances also exhibit significantly lower particle deposition near the stagnation point when compared to the longer distance (L/D = 6). Indeed, in moving through L/D = 2, 4, and 6, peak deposition density values of 254, 347, and 685 particles/mm 2 shift through radii of 2.1 D, 0.8 D, and 0.1 D, respectively. In addition to the experiments, numerical simulation was also performed, which showed that the particle deposition was dominated by a turbulent dispersion mechanism for L/D = 2, with inertial impaction becoming more important for the L/D = 4 and 6 cases.  相似文献   

19.
Heat transfer between a submerged jet of water and a flat surface held normal to the flow was studied experimentally over a wide range of plate to nozzle diameter ratios (8 ? D/d < 58). The average heat transfer coefficients were found to be independent of nozzle to plate distance (γ) in the region studied, (γ/d < 7). An equation was developed by separating the target area into the impingement and the wall jet regions. The data were correlated by For nozzle Reynolds numbers 2,000 to 40,000; D/d ? 8 and γ/d < 7.  相似文献   

20.
Fluid bed dryers are commonly used to process granular solids. The design of the gas distributor has a significant impact on the performance of heat and mass transfer with or without chemical reactions in fluidized beds because it affects the quality of the fluidization obtained. In this work, an extensive study was carried out to design an optimal gas distribution system for a fluidized bed dryer. The air distribution chamber, also called a plenum chamber or gas chamber, was modified to obtain uniform air distribution across the bed cross section. Percentage maldistribution of the flow is considered as the basic evaluation parameter to quantify uniformity of the fluidizing gas distribution. Effects of various relevant design parameters such as the ratio of the orifice diameter to plate thickness (do/t), percentage free area, superficial gas velocity, etc., were examined experimentally and via modeling. The gas chamber was redesigned by inserting different types of packings in the chamber. In addition, the effect of height-to-diameter ratio (H/D) of the chamber on flow distribution was studied. Chambers of different H/D ratios and different air inlet nozzle diameters at various positions were examined to evaluate their effect on flow uniformity across the distributor. Three-dimensional computational fluid dynamic studies were carried out to evaluate the effects of pertinent parameters on flow uniformity, which has a direct bearing on the quality of fluidization and hence heat and mass transfer rates obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号