共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
在分布式数据库查询优化中,数据传输和多连接次序往往决定了查询执行速度,以通信代价最小为目标的代价模型一直是研究的重点。随着大数据时代的到来,如何提高数据库的查询效率成为我们所要面对的首要问题。为此,利用蚁群算法优化查询计划,以多元连接查询操作为例,进行了模型建立和算法实现。在Oracle数据库中进行了仿真实验,实验结果表明该算法有较好的寻优效果,并对分布式数据库的查询优化具有实际意义。 相似文献
3.
连接查询优化是提高数据库性能的关键技术,针对数据库连接查询优化效率低的难题,提出一种量子蚁群算法的数据库连接查询优化方法(QACA).首先,将数据库连接查询计划左深树看作一个蚂蚁,然后,利用量子旋转门更新各路径信息素,并利用混沌变异策略保持种群多样性,通过蚂蚁之间的信息交流找到数据库连接查询最优计划,最后,进行数据库连接查询优化实例分析.结果表明,QACA是解决数据库连接查询优化的有效途径,获得理想的数据库连接查询计划,具有实际意义. 相似文献
4.
5.
查询操作是数据库中最常用的操作,由于分布式数据库的数据分布性和冗余性,使得查询优化处理成为分布式数据库研究的核心问题之一。为了提高分布式数据库查询效率,分析讨论了基于直接连接的常见执行策略和查询优化算法,同时针对分布式数据库应用中多表连接时存在多连接属性,提出一种改进的直接连接查询优化策略。改进后的算法提高了查询执行的并行性,缩短了查询处理时间,提高了查询效率。 相似文献
6.
基于多连接属性划分的分布式数据库查询优化算法 总被引:1,自引:0,他引:1
阐述查询优化的主要目的,针对分布式数据库的查询优化,介绍直接连接的查询策略以及直接查询优化算法hash划分算法与Partition算法,提出基于多连接属性划分的查询优化算法--MP算法.该算法在实验中取得较好的结果. 相似文献
7.
8.
连接查询优化技术对提升数据库性能至关重要,提出一种改进的连接查询算法,结合Wander Join连接查询算法,使用蚁群遗传混合算法对连接顺序进行优化。执行新的连接计划后,用剪枝策略降低样本的连接复杂度,达到了减少存储代价的目的。
理论分析和基于TPC-H数据集、TPC-DS数据集的算法对比实验表明,在多表连接的样本置信区间大于或等于95%的条件下,根据选择率的不同,加入蚁群遗传混合算法和剪枝策略的连接查询算法的相对错误率与Wander Join连接查询算法相比下降了20%~70%。 相似文献
9.
多连接查询优化是提高数据库性能的关键问题之一。Chiang Lee提出了一种启发式多连接查询优化算法MVP,分析发现该算法并没有考虑减小执行计划的计算代价。该文结合哈希过滤的特点提出一种改进的多连接查询优化算法,与MVP算法相比该算法降低了执行计划的计算代从,从而使查询响应时间更短。 相似文献
10.
分布式数据库中基于半连接的查询优化算法研究 总被引:2,自引:0,他引:2
首先阐述了分布式查询优化的主要目标,介绍了半连接算法和基于半连接的二分劈开缩减算法,分析了两者的特点和不足并在其基础上提出了一种新的优化算法——两次半连接对接算法。通过进行两次半连接减少了通信信息量,并且利用多结点的并行性处理提高了查询的响应时间和处理速度。通过对三种算法的比较对新算法的性能进行了分析,结果表明,该算法在某些特定的环境下确实具有较高的处理速度、节点利用率和实际可行性,适合大规模的数据库查询。 相似文献
11.
12.
13.
14.
15.
16.
蚁群优化算法的研究和应用已取得了不少重要成果,然而在大规模优化应用中还存在搜索时间长的问题,为此研究了一种基于细粒度模型的并行蚁群算法。实验结果表明,该算法与最新的改进算法相比,搜索速度提高数十倍至数百倍以上。 相似文献
17.
人工免疫算法具有快速随机的全局搜索能力,但对于系统中的反馈信息利用不足,往往做大量无为的冗余迭代,求解效率低。蚁群算法具有分布式并行全局搜索能力,通过信息素的积累和更新收敛于最优路径上,但初期信息素匮乏,求解速度慢。该文提出一种基于人工免疫算法和蚁群算法的混合算法,采用人工免疫算法生成信息素分布,利用蚁群算法求优化解。将该算法用于求解旅行商问题进行计算机仿真,结果表明,该算法是一种收敛速度和寻优能力都比较好的优化方法。 相似文献