首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Addition of ammonium ions to yeast cells growing on proline as the sole nitrogen source induces rapid inactivation and degradation of the general amino acid permease Gap1 through a process requiring the Npi1/Rsp5 ubiquitin (Ub) ligase. In this study, we show that NH4+ induces endocytosis of Gap1, which is then delivered into the vacuole where it is degraded. This down-regulation is accompanied by increased conversion of Gap1 to ubiquitinated forms. Ubiquitination and subsequent degradation of Gap1 are impaired in the npi1 strain. In this mutant, the amount of Npi1/Rsp5 Ub ligase is reduced >10-fold compared with wild-type cells. The C-terminal tail of Gap1 contains sequences, including a di-leucine motif, which are required for NH4+-induced internalization and degradation of the permease. We show here that mutant Gap1 permeases affected in these sequences still bind Ub. Furthermore, we provide evidence that only a small fraction of Gap1 is modified by Ub after addition of NH4+ to mutants defective in endocytosis.  相似文献   

2.
3.
Echinocandins and nikkomycins are antibiotics that inhibit the synthesis of the essential cell wall polysaccharide polymers 1,3-beta-glucan and chitin, respectively. Some 40 echinocandin-resistant Saccharomyces cerevisiae mutants were isolated and assigned to five complementation groups. Four complementation groups contained mutants with 38 recessive mutations. The fifth complementation group comprised mutants with one dominant mutation, etg1-3 (strain MS10), and one semidominant mutation, etg1-4 (strain MS14). MS10 and MS14 are resistant to the semisynthetic pneumocandin B, L-733,560, and to aculeacin A but not to papulacandin. In addition, microsomal membranes of both mutant strains contain 1,3-beta-glucan synthase activity that is resistant to L-733,560 but not to papulacandin. Furthermore, MS14 is also supersensitive to nikkomycin Z. The echinocandin resistance and the nikkomycin Z supersensitivity of MS14 cosegregated in genetic crosses. The wild-type gene (designated ETG1 [C. Douglas, J. A. Marrinan, and M. B. Kurtz, J. Bacteriol. 176:5686-5696, 1994, and C. Douglas, F. Foor, J. A. Marrinan, N. Morin, J. B. Nielsen, A. Dahl, P. Mazur, W. Baginsky, W. Li, M. El-Sherbeini, J. A. Clemas, S. Mandala, B. R. Frommer, and M. B. Kurtz, Proc. Natl. Acad. Sci. USA, in press]) was isolated from a genomic library in the plasmid YCp50 by functional complementation of the nikkomycin Z supersensitivity phenotype. The cloned DNA also partially complements the echinocandin resistance phenotype, indicating that the two phenotypes are due to single mutations. The existence of a single mutation, in MS14, simultaneously affecting sensitivity to a glucan synthase inhibitor and a chitin synthase inhibitor implies a possible interaction between the two polymers at the cell surface.  相似文献   

4.
5.
Interesting challenges from metabolically engineered Saccharomyces cerevisiae cells arise from the opportunity to obtain yeast strains useful for the production of chemicals. In this paper, we show that engineered yeast cells deficient in the triose phosphate isomerase activity are able to produce glycerol without the use of steering agents. High yields of conversion of glucose into glycerol (80-90% of the theoretical yield) and productivity (1.5 g L-1 h-1) have been obtained by a bioconversion process carried out in a poor and clean medium. We obtained indications that the growth phase at which the biomass was collected affect the process. The best results were obtained using cells collected at the end of exponential phase of growth. In perspective, the strategies and the information about the physiology of the cells described here could be useful for the developing of new biotechnological processes for glycerol production, outflanking the problems related to the use of high level of steering agents.  相似文献   

6.
The opioid system plays an important role in feeding. In general, opioid agonists typically increase feeding and opioid antagonists decrease feeding in non-food restricted animals. In food restricted animals the effects of these drugs are substantially reduced. Opioid antagonists have shown a marked effectiveness at reducing consumption of sweet foods. Explanations for this robust effect have typically focused on drug induced changes in taste, taste perception, or palatability. The current study relates the effects of the opioid antagonist naloxone on motivation to obtain different sucrose concentrations to the drug's effects on unrestricted sucrose solution consumption. Changes in motivation to respond were assessed under a progressive ratio reinforcement schedule (PR) which required increased response cost for each successive unit of sucrose solution. Motivation, as measured by the PR, increased as sucrose concentration increased and naloxone produced a dose-dependent decrease in motivation to respond for a given sucrose concentration. Thus, the effectiveness of naloxone was indirectly related to strength of the sucrose concentration. Under unrestricted access to sucrose solutions, naloxone reduced consumption greatest under the higher concentrations. The data suggest at least part of naloxone's effects on sweet tasting food may be mediated through endogenous opioid reward systems that are reflected in measures of motivation.  相似文献   

7.
8.
It is well known that high stress and particularly an enhancement of plasma catecholamines and myocardial infarction have a close relation. In addition, adrenaline is presented as a prothrombogenic agent in vivo. The role of the other agents such as serotonin or acetylcholine, in the development of arterial thrombosis is somewhat uncertain, although, the role of each of them is often considered at the level of vascular regulation only. Therefore, the present study was designed to investigate the effects of three neurotransmitters on experimental arterial thrombosis model induced by generation of free radicals. The results demonstrate that intravenously injection of adrenaline or serotonin (1 ng/kg) stimulated arterial thrombosis formation, whereas injection of high dose of acetylcholine (5 mg/kg) slackened the thrombosis formation.  相似文献   

9.
We have tested the clones used in the European Yeast Chromosome III Sequencing Programme for possible artefacts that might have been introduced during cloning or passage through Escherichia coli. Southern analysis was performed to compare the BamHI, EcoRI, HindIII and PstI restriction pattern for each clone with that of the corresponding locus on chromosome III in the parental yeast strain. In addition, further enzymes were used to compare the restriction maps of most clones with the map predicted by the nucleotide sequence (Oliver et al., 1992). Only four of 506 6-bp restriction sites predicted by the sequence were not observed experimentally. No significant cloning artefacts appear to disrupt the published sequence of chromosome III. The restriction patterns of six yeast strains have also been compared. In addition to two previously identified sites of Ty integration on chromosome III (Warmington et al., 1986; Stucka et al., 1989; Newlon et al., 1991), a new polymorphic site involving Ty retrotransposition (the Far Right-Arm transposition Hot-Spot, FRAHS) has been identified close to CRY1. On the basis of simple restriction polymorphisms, the strains S288C, AB972 and W303-1b are closely related, while XJ24-24a and J178 are more distant relatives of S288C. A polyploid distillery yeast is heterozygous for many polymorphisms, particularly on the right arm of the chromosome.  相似文献   

10.
11.
The small GTP-binding protein Ras and heterotrimeric G-proteins are key regulators of growth and development in eukaryotic cells. In mammalian cells, Ras functions to regulate the mitogen-activated protein kinase pathway in response to growth factors, whereas many heterotrimeric GTP-binding protein alpha-subunits modulate cAMP levels through adenylyl cyclase as a consequence of hormonal action. In contrast, in the yeast Saccharomyces cerevisiae, it is the Ras1 and Ras2 proteins that regulate adenylyl cyclase. Of the two yeast G-protein alpha-subunits (GPA1 and GPA2), only GPA1 has been well studied and shown to negatively regulate the mitogen-activated protein kinase pathway upon pheromone stimulation. In this report, we show that deletion of the GPA2 gene encoding the other yeast G-protein alpha-subunit leads to a defect in pseudohyphal development. Also, the GPA2 gene is indispensable for normal growth in the absence of Ras2p. Both of these phenotypes can be rescued by deletion of the PDE2 gene product, which inactivates cAMP by cleavage, suggesting that these phenotypes can be attributed to low levels of intracellular cAMP. In support of this notion, addition of exogenous cAMP to the growth media was also sufficient to rescue the phenotype of a GPA2 deletion strain. Taken together, our results directly demonstrate that a G-protein alpha-subunit can regulate the growth and pseudohyphal development of S. cerevisiae via a cAMP-dependent mechanism. Heterologous expression of mammalian G-protein alpha-subunits in these yeast GPA2 deletion strains could provide a valuable tool for the mutational analysis of mammalian G-protein function in an in vivo null setting.  相似文献   

12.
The presence of any one of the five unlinked MAL loci (MAL1, MAL2, MAL3, MAL4 and MAL6) confers the ability to ferment maltose on the yeast Saccharomyces cerevisiae. Each locus is composed of three genes encoding maltose permease, alpha-glucosidase and MAL activator. Chromosomal DNA of seven representative baking strains has been separated by pulse-field gel electrophoresis and probed with three genes in MAL6 locus. The DNA bands to which all of the three MAL-derived probes simultaneously hybridized were chromosome VII carrying MAL1 in all of the strains tested, chromosome XI carrying MAL4 in six strains, chromosome III carrying MAL2 in three strains and chromosomes II and VIII carrying MAL3 and MAL6, respectively, in the one strain. The number of MAL loci in baking strains was comparable to those of brewing strains.  相似文献   

13.
Haploid Saccharomyces cerevisiae cells find each other during conjugation by orienting their growth toward each other along pheromone gradients (chemotropism). However, when their receptors are saturated for pheromone binding, yeast cells must select a mate by executing a default pathway in which they choose a mating partner at random. We previously demonstrated that this default pathway requires the SPA2 gene. In this report we show that the default mating pathway also requires the AXL1, FUS1, FUS2, FUS3, PEA2, RVS161, and BNI1 genes. These genes, including SPA2, are also important for efficient cell fusion during chemotropic mating. Cells containing null mutations in these genes display defects in cell fusion that subtly affect mating efficiency. In addition, we found that the defect in default mating caused by mutations in SPA2 is partially suppressed by multiple copies of two genes, FUS2 and MFA2. These findings uncover a molecular relationship between default mating and cell fusion. Moreover, because axl1 mutants secrete reduced levels of a-factor and are defective at both cell fusion and default mating, these results reveal an important role for a-factor in cell fusion and default mating. We suggest that default mating places a more stringent requirement on some aspects of cell fusion than does chemotropic mating.  相似文献   

14.
To help elucidate the mechanisms involved in spontaneous mutagenesis, DNA sequencing has been applied to characterize the types of mutation whose rates are increased or decreased in mutator or antimutator strains, respectively. Increased spontaneous mutation rates point to malfunctions in genes that normally act to reduce spontaneous mutation, whereas decreased rates are associated with defects in genes whose products are necessary for spontaneous mutagenesis. In this article, we survey and discuss the mutational specificities conferred by mutator and antimutator genes in the budding yeast Saccharomyces cerevisiae. The implications of selected aspects of the data are considered with respect to the mechanisms of spontaneous mutagenesis.  相似文献   

15.
BACKGROUND: With the progression of acquired immunodeficiency virus (AIDS) and human immunodeficiency virus (HIV) infection to endemic areas of cysticercosis, the simultaneous diagnosis of both diseases is an expected event. METHODS: Among 91 patients with AIDS or HIV infection studied from 1987 to 1993 at a neurologic reference center in Mexico City, 2 patients with AIDS and neurocysticercosis were found. Five previously reported cases were jointly reviewed. RESULTS: The first patient presented with increased intracranial pressure of rapid progression. A single giant cyst was surgically excised and cysticercus was confirmed on histopathologic examination. The second patient had brain toxoplasmosis and concurrent neurocysticercosis as an incidental finding. CONCLUSIONS: Neurocysticercosis in HIV infection/AIDS may appear as a life-threatening condition or as an incidental finding. All reported cases have been found in advanced stages of HIV infection. Management must be individualized depending on the clinical form of cysticercosis, stage of HIV infection, and coexisting opportunistic conditions. Surgery may be lifesaving and some patients apparently responded to cysticidal drugs.  相似文献   

16.
The secretion of Escherichia coli beta-lactamase was studied in a Saccharomyces cerevisiae ts1 mutant strain. The signal sequence of pre-beta-lactamase was recognized by the yeast cell and the precursor protein was processed to an enzymatically active mature beta-lactamase. In contrast to conventional strains, the mutant strain was able to secrete bla-gene-encoded beta-lactamase into the culture broth. These results indicate the potential usefulness of ts1 mutant strains for biotechnological purposes.  相似文献   

17.
The three dimensional organization of microtubules in mitotic spindles of the yeast Saccharomyces cerevisiae has been determined by computer-aided reconstruction from electron micrographs of serially cross-sectioned spindles. Fifteen spindles ranging in length from 0.6-9.4 microns have been analyzed. Ordered microtubule packing is absent in spindles up to 0.8 micron, but the total number of microtubules is sufficient to allow one microtubule per kinetochore with a few additional microtubules that may form an interpolar spindle. An obvious bundle of about eight interpolar microtubules was found in spindles 1.3-1.6 microns long, and we suggest that the approximately 32 remaining microtubules act as kinetochore fibers. The relative lengths of the microtubules in these spindles suggest that they may be in an early stage of anaphase, even though these spindles are all situated in the mother cell, not in the isthmus between mother and bud. None of the reconstructed spindles exhibited the uniform populations of kinetochore microtubules characteristic of metaphase. Long spindles (2.7-9.4 microns), presumably in anaphase B, contained short remnants of a few presumed kinetochore microtubules clustered near the poles and a few long microtubules extending from each pole toward the spindle midplane, where they interdigitated with their counterparts from the other pole. Interpretation of these reconstructed spindles offers some insights into the mechanisms of mitosis in this yeast.  相似文献   

18.
19.
Amino acid pools were compared in a constructed diploid strain of Saccharomyces cerevisiae, SKD1, and a closely related strain, SKD2, carrying the slp1 mutation characterized by low pools of lysine and lacking a central vacuole. Cells of SKD2 grew more poorly than SKD1 but took up the same total amount of amino acids from the medium per cell although the profile differed between the two strains. Initially, the total pool was much higher in SKD1 than in SKD2 but the overall relative distribution between cytosol and vacuole was identical and mainly cytosolic even though the composition differed between the two strains. At the end of growth the amino acid concentration had increased and become predominantly vacuolar. Two days later the total pool in SKD1 had declined to the starting level but the intracellular distribution remained identical to that at the end of fermentation. The total concentration of amino acids in SKD2 continued to increase, particularly in the cytosol.  相似文献   

20.
Hsp90 functions in a multicomponent chaperone system to promote the maturation and maintenance of a diverse, but specific, set of target proteins that play key roles in the regulation of cell growth and development. To identify additional components of the Hsp90 chaperone system and its targets, we searched for multicopy suppressors of various temperature-sensitive mutations in the yeast Hsp90 gene, HSP82. Three suppressors were isolated for one Hsp90 mutant (glutamate --> lysine at amino acid 381). Each exhibited a unique, allele-specific pattern of suppression with other Hsp90 mutants and had unique structural and biological properties. SSF1 is a member of an essential gene family and functions in the response to mating pheromones. CNS1 is an essential gene that encodes a component of the Hsp90 chaperone machinery. The role of HCH1 is unknown; its sequence has no strong homology to any protein of known function. SSF1 and CNS1 were weak suppressors, whereas HCH1 restored wild-type growth rates at all temperatures tested to cells expressing the E381K mutant. Overexpression of CNS1 or HCH1, but not SSF1, enhanced the maturation of a heterologous Hsp90 target protein, p60(v-src). These results suggest that like Cns1p, Hch1p is a general modulator of Hsp90 chaperone functions, whereas Ssf1p likely is either an Hsp90 target protein or functions in the same pathway as an Hsp90 target protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号