首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers a scheduling problem for parallel burn-in ovens in the semiconductor manufacturing industry. An oven is a batch processing machine with restricted capacity. The batch processing time is set by the longest processing time among those of all the jobs contained in the batch. All jobs are assumed to have the same due date. The objective is to minimize the sum of the absolute deviations of completion times from the due date (earliness–tardiness) of all jobs. We suggest three decomposition heuristics. The first heuristic applies the exact algorithm due to Emmons and Hall (for the nonbatching problem) in order to assign the jobs to separate early and tardy job sets for each of the parallel burn-in ovens. Then, we use job sequencing rules and dynamic programming in order to form batches for the early and tardy job sets and sequence them optimally. The second proposed heuristic is based on genetic algorithms. We use a genetic algorithm in order to assign jobs to each single burn-in oven. Then, after forming early and tardy job sets for each oven we apply again sequencing rules and dynamic programming techniques to the early and tardy jobs sets on each single machine in order to form batches. The third heuristic assigns jobs to the m early job sets and m tardy jobs sets in case of m burn-in ovens in parallel via a genetic algorithm and applies again dynamic programming and sequencing rules. We report on computational experiments based on generated test data and compare the results of the heuristics with known exact solution for small size test instances obtained from a branch and bound scheme.  相似文献   

2.
We study several single-machine non-preemptive scheduling problems to minimize the sum of weighted earliness–tardiness, weighted number of early and tardy jobs, common due window location, and flowtime penalties. We allow the due window location to be either a decision variable or a given parameter. We assume that the due window location has a tolerance and the window size is a given parameter. We further make the assumption that the ratios of the job processing times to the earliness–tardiness weights are agreeable for the first problem. We propose pseudo-polynomial dynamic programming algorithms to optimally solve the problems. We also provide polynomial time algorithms for several special cases.Scope and purpose The widespread use of Just-In-Time philosophy in manufacturing to eliminate inventories leads to a new class of scheduling problems in which the earliness and/or number of early jobs are penalized as well as the tardiness and/or tardy jobs. In this type of environments, the jobs are sometimes associated with a period of time within which they incur no penalty since the customers will generally allow a time interval for the delivery of the products. This time period is called a due window. There are a variety of applications with due windows in factory automation, production maintenance, and so on. In this paper, we consider the common due window problems to minimize the weighted earliness–tardiness, weighted number of early–tardy jobs and weighted flowtime on a single machine. The main contributions of this paper are identifying the computational complexity of the problems, developing dynamic programming algorithms to optimally solve them, and providing efficient and exact polynomial algorithms for the special cases.  相似文献   

3.
We study a supply chain scheduling problem in which n jobs have to be scheduled on a single machine and delivered to m customers in batches. Each job has a due date, a processing time and a lateness penalty (weight). To save batch-delivery costs, several jobs for the same customer can be delivered together in a batch, including late jobs. The completion time of each job in the same batch coincides with the batch completion time. A batch setup time has to be added before processing the first job in each batch. The objective is to find a schedule which minimizes the sum of the weighted number of late jobs and the delivery costs. We present a pseudo-polynomial algorithm for a restricted case, where late jobs are delivered separately, and show that it becomes polynomial for the special cases when jobs have equal weights and equal delivery costs or equal processing times and equal setup times. We convert the algorithm into an FPTAS and prove that the solution produced by it is near-optimal for the original general problem by performing a parametric analysis of its performance ratio.  相似文献   

4.
In this paper, we consider two new types of the two-machine flowshop scheduling problems where a batching machine is followed by a single machine. The first type is that normal jobs with transportation between machines are scheduled on the batching and single machines. The second type is that normal jobs are processed on the batching machine while deteriorating jobs are scheduled on the single machine. For the first type, we formulate the problem to minimize the makespan as a mixed integer programming model and prove that it is strongly NP-hard. Furthermore, a heuristic algorithm along with a worst case error bound is derived and the computational experiments are also carried out to verify the effectiveness of the proposed heuristic algorithm. For the second type, the two objectives are considered. For the problem with minimizing the makespan, we find an optimal polynomial algorithm. For the problem with minimizing the sum of completion time, we show that it is strongly NP-hard and propose an optimal polynomial algorithm for its special case.  相似文献   

5.
We consider a continuous multi-facility location allocation problem where the demanding entities are regions in the plane instead of points. The problem can be stated as follows: given m (closed, convex) polygonal demand regions in the plane, find the locations of q facilities and allocate each region to exactly one facility so as to minimize a weighted sum of squares of the maximum Euclidean distances between the demand regions and the facilities they are assigned to.We propose mathematical programming formulations of the single and multiple facility versions of the problem considered. The single facility location problem is formulated as a second order cone programming (SOCP) problem, and hence is solvable in polynomial time. The multiple facility location problem is NP-hard in general and can be formulated as a mixed integer SOCP problem. This formulation is weak and does not even solve medium-size instances. To solve larger instances of the problem we propose three heuristics. When all the demand regions are rectangular regions with their sides parallel to the standard coordinate axes, a faster special heuristic is developed. We compare our heuristics in terms of both solution quality and computational time.  相似文献   

6.
We consider the bounded single-machine parallel-batch scheduling problem with release dates and rejection. A job is either rejected, in which case a certain penalty has to be paid, or accepted and then processed on the machine. The objective is to minimize the sum of the makespan of the accepted jobs and the total penalty of the rejected jobs. When the jobs have identical release dates, we present a polynomial-time algorithm. When the jobs have a constant number of release dates, we give a pseudo-polynomial-time algorithm. For the general problem, we provide a 2-approximation algorithm and a polynomial-time approximation scheme.  相似文献   

7.
This paper considers single-machine scheduling problems with deteriorating jobs, i.e., jobs whose processing times are an increasing function of their starting times. In addition, the jobs are related by a series–parallel graph. It is shown that for the general linear problem to minimize the makespan, polynomial algorithms exist. It is also shown that for the proportional linear problem of minimization of the total weighted completion time, polynomial algorithms exist, too.  相似文献   

8.
In this article, we consider a single-machine scheduling problem with one unavailability period, with the aim of minimizing the weighted sum of the completion times. We propose three exact methods for solving such a problem: a branch-and-bound method based on new properties and lower bounds, a mixed integer programming model, and a dynamic programming method. These methods were coded and tested on randomly generated instances, and their performances were analyzed. Our numerical experiments show that the branch-and-bound method and the dynamic programming method are complementary. Using these approaches, we are able to solve problems with up to 3000 jobs within a reasonable computation time.  相似文献   

9.
This paper considers a single-machine problem with the sum-of-processing time based learning effect and release times. The objective is to minimize the total weighted completion times. First, a branch-and-bound algorithm incorporating with several dominance properties and two lower bounds are developed for the optimal solution. Then a genetic heuristic-based algorithm is proposed for a near-optimal solution. Finally, a computational experiment is conducted to evaluate the performances of the proposed algorithms. The results show that the branch-and-bound algorithm can solve instances up to 15 jobs, and the average error percentage of the genetic heuristic algorithm is less than 0.105%.  相似文献   

10.
For the -hard problem of scheduling n jobs in a two-machine flow shop so as to minimize the total completion time, we present two equivalent lower bounds that are computable in polynomial time. We formulate the problem by the use of positional completion time variables, which results in two integer linear programming formulations with O(n 2) variables and O(n) constraints. Solving the linear programming relaxation renders a very strong lower bound with an average relative gap of only 0.8% for instances with more than 30 jobs. We further show that relaxing the formulation in terms of positional completion times by applying Lagrangean relaxation yields the same bound, no matter which set of constraints we relax.  相似文献   

11.
e consider a single-machine batch delivery scheduling and common due date assignment problem. In addition to making decisions on sequencing the jobs, determining the common due date, and scheduling job delivery, we consider the option of performing a rate-modifying activity on the machine. The processing time of a job scheduled after the rate-modifying activity decreases depending on a job-dependent factor. Finished jobs are delivered in batches. There is no capacity limit on each delivery batch, and the cost per batch delivery is fixed and independent of the number of jobs in the batch. The objective is to find a common due date for all the jobs, a location of the rate-modifying activity, and a delivery date for each job to minimize the sum of earliness, tardiness, holding, due date, and delivery cost. We provide some properties of the optimal schedule for the problem and present polynomial algorithms for some special cases.  相似文献   

12.
This paper studies a new class of single-machine scheduling problems, which are faced by Just-in-Time-suppliers satisfying a given demand. In these models the processing of jobs leads to a release of a predefined number of product units into inventory. Consumption is triggered by predetermined time-varying, and product-specific demand requests. While all demands have to be fulfilled, the objective is to minimize the resulting product inventory. We investigate different subproblems of this general setting with regard to their computational complexity. For more restricted problem versions strongly polynomial time algorithms are presented. In contrast to this, NP-hardness in the strong sense is proven for more general problem versions. Moreover, for the most general version, even finding a feasible solution is shown to be strongly NP-hard.  相似文献   

13.
This paper investigates the hybrid flowshop scheduling with finite intermediate buffers, whose objective is to minimize the sum of weighted completion time of all jobs. Since this problem is very complex and has been proven strongly NP-hard, a tabu search heuristic is proposed. In this heuristic there are two main features. One is that a scatter search mechanism is incorporated to improve the diversity of the search procedure. And the other is that a permutation of N jobs representing their processing order in the first stage instead of a complex complete schedule is used to denote a solution. Computational experiments on randomly generated instances with different structures show that the proposed tabu search heuristic can provide good solutions compared to both the lower bounds and the algorithm proposed for this problem in a lately published literature.  相似文献   

14.
We consider the problem of scheduling jobs on two parallel identical machines where an optimal schedule is defined as one that gives the smallest makespan (the completion time of the last job) among the set of schedules with optimal total flowtime (the sum of the completion times of all jobs). We propose an algorithm to determine optimal schedules for the problem, and describe a modified multifit algorithm to find an approximate solution to the problem in polynomial computational time. Results of a computational study to compare the performance of the proposed algorithms with a known heuristic shows that the proposed heuristic and optimization algorithms are quite effective and efficient in solving the problem.Scope and purposeMultiple objective optimization problems are quite common in practice. However, while solving scheduling problems, optimization algorithms often consider only a single objective function. Consideration of multiple objectives makes even the simplest multi-machine scheduling problems NP-hard. Therefore, enumerative optimization techniques and heuristic solution procedures are required to solve multi-objective scheduling problems. This paper illustrates the development of an optimization algorithm and polynomially bounded heuristic solution procedures for the scheduling jobs on two identical parallel machines to hierarchically minimize the makespan subject to the optimality of the total flowtime.  相似文献   

15.
In many resource allocation problems in physical or economic systems, a linear resource consumption function is commonly considered, and job processing times are assumed to be fixed parameters. However, the former assumption fails to reflect the law of diminishing returns, and the latter may be controlled by changing the allocation of resources to jobs. Motivated by these observations, we provide a unified model for solving single-machine scheduling problems in which each job's processing time is a function of its starting time and convex resource allocation. The objective is to find the optimal sequence of jobs subject to a limited resource consumption. We first show how this unified model can be useful in solving scheduling problems under due date assignment considerations. We analyze the problem with four different due date assignment methods, and our objective function includes costs for earliness, tardiness and due date assignments. We also consider scheduling problems without involving due date assignment decisions. The objective function is to minimize the makespan, total completion time, total absolute variation in completion times, and total absolute variation in waiting times. We show that several existing well-known problems can be reduced to a special case of our unified model and solved in O(nlogn) time.  相似文献   

16.
An exact algorithm for single-machine scheduling without machine idle time   总被引:1,自引:0,他引:1  
This study proposes an exact algorithm for the general single-machine scheduling problem without machine idle time to minimize the total job completion cost. Our algorithm is based on the Successive Sublimation Dynamic Programming (SSDP) method. Its major drawback is heavy memory usage to store dynamic programming states, although unnecessary states are eliminated in the course of the algorithm. To reduce both memory usage and computational efforts, several improvements to the previous algorithm based on the SSDP method are proposed. Numerical experiments show that our algorithm can optimally solve 300 jobs instances of the total weighted tardiness problem and the total weighted earliness-tardiness problem, and that it outperforms the previous algorithms specialized for these problems.  相似文献   

17.
Deteriorating jobs scheduling problems have been widely studied recently. However, research on scheduling problems with deteriorating jobs has rarely considered explicit setup times. With the current emphasis on customer service and meeting the promised delivery dates, we consider a single-machine scheduling problem to minimize the number of late jobs with deteriorating jobs and setup times in this paper. We derive some dominance properties, a lower bound, and an initial upper bound by using a heuristic algorithm to speed up the search process of the branch-and-bound algorithm. Computational experiments show that the algorithm can solve instances up to 1000 jobs in a reasonable amount of time.  相似文献   

18.
We consider a single-machine scheduling problem, in which the job processing times are controllable or compressible. The performance criteria are the compression cost and the number of tardy jobs. For the problem, where no tardy jobs are allowed and the objective is to minimize the total compression cost, we present a strongly polynomial time algorithm. For the problem to construct the trade-off curve between the number of tardy jobs and the maximum compression cost, we present a polynomial time algorithm. Furthermore, we extend the problem to the case of discrete controllable processing times, where the processing time of a job can only take one of several given discrete values. We show that even some special cases of the discrete controllable version with the objective of minimizing the total compression cost are NP-hard, but the general case is solvable in pseudo-polynomial time. Moreover, we present a strongly polynomial time algorithm to construct the trade-off curve between the number of tardy jobs and the maximum compression cost for the discrete controllable version. This research was supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the MOE, China, and the National Natural Science Foundation of China (10271110). The third author was supported in part by The Hong Kong Polytechnic University under a grant from the ASD in China Business Services.  相似文献   

19.
We consider single-machine scheduling with fixed delivery dates, which are given or determined before the jobs are processed. A job is delivered on the earliest fixed delivery date that is no earlier than its completion time. The flowtime of a job is defined as its delivery date. The objective is to minimize the total weighted flowtime of the jobs. The largest ratio first (LRF) rule is a heuristic that sequences jobs in nonincreasing order of wj/pj, where pj and wj are the processing time and weight of job Jj, respectively. We investigate the performance bounds of the LRF heuristic under different scenarios of the problem. We conducted computational experiments to test the performance of the heuristic. The results show that the LRF heuristic is able to produce near-optimal and optimal solutions.  相似文献   

20.
We consider single-machine batch delivery scheduling with an assignable common due date and controllable processing times, which vary as a convex function of the amounts of a continuously divisible common resource allocated to individual jobs. Finished jobs are delivered in batches and there is no capacity limit on each delivery batch. We first provide an O(n5) dynamic programming algorithm to find the optimal job sequence, the partition of the job sequence into batches, the assigned common due date, and the resource allocation that minimize a cost function based on earliness, tardiness, job holding, due date assignment, batch delivery, and resource consumption. We show that a special case of the problem can be solved by a lower-order polynomial algorithm. We then study the problem of finding the optimal solution to minimize the total cost of earliness, tardiness, job holding, and due date assignment, subject to limited resource availability, and develop an O(nlog n) algorithm to solve it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号