首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《铸造技术》2016,(10):2197-2199
利用ANSYS有限元分析软件,对16Mn厚板焊接过程进行数值模拟。采用高斯分布热源模型模拟焊接热源,考虑材料物理性能随温度变化的影响,采用有限元法中的"生死单元"技术实现了模拟过程中焊接材料的逐步填充,对厚钢板的对接多道焊过程进行三维瞬态温度场数值模拟。分析焊接温度场分布规律,为优化16Mn厚板多道焊焊接工艺提供参考。  相似文献   

2.
通过大型通用有限元软件ANSYS对焊接火管架焊接温度场进行数值模拟.利用ANSYS软件中的APDL语言编写了温度场计算的程序,选择生热率加载模拟火管架焊接热源的移动过程,并运用生死单元技术模拟焊料的填充过程,最后得到焊接温度场瞬态变化的过程和焊缝中心线上节点的热循环曲线,为焊接火管架残余应力和变形分析提供依据.  相似文献   

3.
铝合金激光深熔焊接热过程有限元数值模拟   总被引:2,自引:1,他引:1  
对铝合金5A06简体纵缝进行激光深熔焊接。采用旋转高斯体热源模型和ANSYS有限元分析软件对其进行了数值模拟。结果表明,用有限元数值模拟方法得到的焊接温度场分布规律与实测结果基本一致。  相似文献   

4.
T形接头焊接温度场的三维数值模拟   总被引:1,自引:0,他引:1  
利用有限元分析软件ANSYS,对T形接头焊接的温度场的分布进行了动态模拟,提出高斯函数和双椭球函数相结合的双热源模型.并应用APDL语言实现了焊接全过程温度场的三维动态模拟,其结果与理论值完全吻合,证明了数值模拟的可靠性.  相似文献   

5.
针对平板对接焊焊接时的热应力特征,通过对焊接过程中加热与冷却温度场的正确描述,并采用合理的热源模式,应用有限元软件ANSYS对其温度场和应力场进行了耦合模拟分析.分析中考虑了钢材热物理参数和力学参数随温度变化的非线性,得到了焊后残余应力的大小与分布规律.设计了等厚和不等厚两组焊接试件,采用盲孔法对其残余应力进行了实测,实测结果与数值模拟结果吻合良好,证明了有限元数值模拟方法的正确.  相似文献   

6.
钛合金平板电子束焊接温度场有限元分析   总被引:5,自引:1,他引:5  
焊接温度场不仅直接通过热应变,而且还间接通过随金属状态和显微组织变化引起的相变、应变决定焊接残余应力,因而对焊接温度场的研究是焊接应力应变分析的前提。在通用的有限元软件ANSYS平台上,根据电子束深熔焊的特点,提出了圆锥形体热源模型,并对电子束焊接温度场进行了数值模拟。有限元数值模拟结果同电子束试验焊缝形状有良好的一致性,圆锥形体热源模型体现了电子束深熔焊所特有的钉形焊缝,能较准确地模拟电子束焊接温度场。  相似文献   

7.
基于ANSYS的铝合金薄板焊接温度场三维有限元模拟   总被引:2,自引:1,他引:1  
针对铝合金薄板对接焊,采用双椭球热源分布模式,基于ANSYS软件平台,建立了运动电弧作用下焊接过程的有限元数值分析模型。在模拟的过程中,利用ANSYS软件的AFDL语言,较好地模拟了焊接时焊接电弧移动加热过程以及整个温度场的瞬态变化,实现了参数化编程。对模拟的动态过程进行分析,得到了焊件温度场的分布规律,为以后焊接应力应变的准确分析奠定了基础。  相似文献   

8.
基于大型有限元分析软件ANSYS,以液压挖掘机铲斗体为例,采用APDL语言对其进行焊接温度场和应力场的数值动态模拟.有限元模型采用三维实体单元,考虑了材料热物理性能随着温度的变化和周围对流、辐射散热的影响,运用内生热的加载方式来模拟焊接热源及单元生死技术模拟焊缝的填充过程,得到了焊接过程温度场和应力场,并对结果进行分析.  相似文献   

9.
采用双椭球热源模型,借助ANSYS有限元分析软件,建立了平板对接焊的有限元模型,数值模拟了不同焊接电流下平板对接焊的温度场和应力应变场,并归纳和总结了它们的分布规律,从而为实际生产中焊接质量的控制提供指导。  相似文献   

10.
T型角接头焊接热源模型研究   总被引:4,自引:1,他引:3  
基于有限元软件ANSYS建立了T型角接头的三维热分析模型,阐述高斯热源模型、双椭球热源模型、均匀热源模型以及两种组合热源模型的分布函数形式,并应用各热源模型结合生死单元技术对T型接头焊接过程进行数值模拟,得到不同热源模型下的焊接动态温度场。通过对数值模拟结果的分析对比表明:高斯热源及高斯-双椭球组合热源模型的模拟熔池尺寸大小有限,使得焊缝不能达到完全熔化;双椭球热源、均匀热源模型及高斯-均匀组合热源模型能较真实地模拟焊缝熔合区的形状及温度场分布,其中应用均匀热源模型可达到更为满意的结果。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号