共查询到16条相似文献,搜索用时 109 毫秒
1.
通过固相自引发基团置换反应——流变相法制备出层状LiNi1/3Co1/3Mn1/3O2正极材料,研究了不同烧结温度对材料的结构特性、微观形貌以及电化学性能的影响。结果表明,850℃煅烧20h的样品具有最佳的二维层状结构和阳离子有序度,产物颗粒呈球形,分布均匀,平均粒径约250nm。在2.8~4.3V区间,以80mA/g充放电,首次放电比容量为169mAh/g,30次循环后容量保持率为82.6%。将充电截止电压提高至4.4V,材料的前几次放电容量明显提高,以32mA/g充放电,10次循环后的放电比容量为174mAh/g,其后容量衰减加快,循环稳定性变差。 相似文献
2.
3.
锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的合成及性能 总被引:1,自引:0,他引:1
采用氢氧化物共沉淀法合成了LiNi1/3Co1/3Mn1/3(OH)2前驱体,然后以Ni1/3Co1/3Mn1/3(OH)2和LiOH·H2O为原料,合成出了层状锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2.通过XRD、SEM和电化学测试对LiNi1/3-Co1/3Mn1/3O2材料的结构、形貌及电化学性能进行了测试和表征.结果表明,800℃烧结12h所合成的样品粒度大小分布比较均匀,该材料以0.2C充放电,其首次放电容量为150mAh·g-1,循环30次后容量为137mAh·g-1. 相似文献
4.
以氢氧化钠为沉淀剂,采用共沉淀法合成了Ni1/3Co1/3Mn1/3(OH)2前驱体,前驱体和LiOH·H2O充分混合高温烧结制备了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2.采用X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对LiNi1/3Co1/3Mn1/3O2正极材料的结构、微观形貌及电化学性能进行了表征.XRD结果表明,所合成的LiNi1/3Co1/3Mn1/3O2物相单一无杂相,具有标准的α-NaFeO2型层状结构.SEM测试显示,颗粒粒度均一,粒径大约在0.5μm,粒径分布窄.以20mA/g电流密度放电,充放电电压在2.8~4.4 V之间,首次放电比容量达到181mAh/g,80次循环之后放电比容量仍然保持在172mAh/g;循环伏安测试显示,LiNi1/3Co1/3Mn1/3O2反应中主要是Ni2 /Ni4 、Co3 /Co4 2个电对在起作用,锰的价态保持不变,起到支撑结构的作用. 相似文献
5.
对改进固相反应法合成的锂离子电池层状正极材料LiNi1/3Co1/3Mn1/3O2,利用XRD,SEM对粉体进行了物相结构和形态表征.当电池充放电时,设定电流密度为120mA/g,电压在2.75~4.5V区间,20次循环后放电比容量为164.5mAh/g.在开路电压到4.5V作为材料的锂离子扩散系数测试电压区间进行CITT循环测试,测定了材料在不同电压,不同循环下的扩散系数,测得扩散系数在10-11~10-12 cm2/s范围内;当电压E=4.3V时扩散系数达到最大值2.8×10-11 cm2/s,随着充放电循环的进行,Li+固相扩散系数先增大后减小. 相似文献
6.
以NaCO3为沉淀剂,NH3·H2O为缓冲溶液,将NiSO4、CoSO4和MnSO4混合溶液共沉淀制备(Ni1/3Co1/3Mn1/3)CO3前驱体,将其在400-900℃热处理5h制备得(Ni1/3Co1/3Mn1/3)Ox氧化物。EDTA络合滴定、BET、XRD及SEM研究表明,随着热处理温度的升高,(Ni1/3Co1/3Mn1/3)Ox中过渡金属含量及结晶度随着增加,而比表面积却减小。(Ni1/3Co1/3Mn1/3)Ox与LiOH混合后在850℃热处理24h制备出LiNi1/3Co1/3Mn1/3O2材料,其结构、形貌及电性能的测试结果表明,前驱体在600℃条件下热处理制备的正极材料电化学性能最佳,其首次放电比容量为189.7mAh·g^-1,不同倍率循环60周后,循环保持率为92.4%。 相似文献
7.
以Ni(NO3)2·6H2O,Co(NO3)2·6H2O,Mn(CH3COO)2·4H2O,LiOH·H2O为原料,采用NaOH-Na2CO3共沉淀的方法,在空气中合成了三元层状锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2.采用XRD研究了所合成材料的结构.考查了不同烧结温度对材料电化学性能的影响.结果表明,所合成的材料具有典型的α-NaFeO2层状结构特征,900℃下合成的材料具有最优的循环性能,初始放电容量为169.4mAh/g,初次库仑效率为83.2%,且20次循环后,容量保持率达到96.3%. 相似文献
8.
锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的制备与表征 总被引:1,自引:0,他引:1
以乙酸锂、硝酸镍、硝酸钴和乙酸锰为原料,通过高温固相法,分别采用一次烧结和二次烧结合成了LiNi1/3Co1/3Mn1/3O2。采用X射线衍射、扫描电镜分析以及电化学测试等手段对LiNi1/3Co1/3Mn1/3O2的微观结构、表面形貌和电化学性能进行了研究。结果表明,高温固相法能得到结晶良好的LiNi1/3Co1/3Mn1/3O2,但二次烧结提高了材料的I(003)/I(104)值,降低了c/a值,得到的LiNi1/3Co1/3Mn1/3O2具有更完善的层状结构和更优良的电化学性能。 相似文献
9.
采用溶胶-凝胶法,以聚丙烯酸为络合剂制备纳米尺寸的锂离子电池LiNi1/3Co1/3Mn1/3O2正极材料。考察了聚丙烯酸与阳离子配比和烧结温度对产物LiNi1/3Co1/3Mn1/3O2结 构 与 电 化 学 性 能 的 影 响。结果表明,烧结温度700℃可制备出晶体发育完整、粒径80nm、分 布 均 匀 的α-NaFeO2层 状 结 构 的LiNi1/3Co1/3Mn1/3O2。当聚丙烯酸与金属阳离子摩尔比值为0.75,首次放电比容量达到169.2mAh/g,30次循环后容量保持率为89.3%。 相似文献
10.
以Li0.5La0.5TiO3为包覆物,制备了固体电解质包覆的LiNi1/3Co1/3Mn1/3O2正极材料.采用XRD、SEM对材料进行了表征:XRD显示未包覆的材料具有α-NaFeC2层状结构,粒径在200~300nm之间,包覆后材料粒径略有增大,包覆层具有ABO3型固体电解质结构.包覆层的致密程度及材料的循环稳定性与热处理温度有关.包覆后400℃热处理得到的材料首次放电比容量为185mAh/g,较未包覆材料容量有所提高,50次循环后其容量仍能达到156.5mAh/g,表明包覆物Li0.5La0.5TiO3对LiNi1/3Co1/3Mn1/3O2具有保护作用. 相似文献
11.
为提高三元正极材料的性能,采用纳米AlPO4包覆。并用X射线衍射(XRD),扫描电镜(SEM),透射电镜(TEM)和恒流充放电对包覆和未包覆的材料进行结构表征与性能测试分析。结果表明,AlPO4包覆并没有改变电极材料的晶体结构,仅在电极材料表面形成均匀的包覆层,厚度约为4nm。包覆后的电极材料在3~4.5V的充放电电压范围内,循环性能明显优于未包覆的材料,并且包覆量越高,材料的性能越好。但是包覆量太高会影响其初始容量,研究表明,0.2%的包覆浓度能够提高材料的电化学性能。 相似文献
12.
The layered LiNi1/3CO1/3Mn1/3-xMg(x)O2 (x = 0, 0.01, 0.03, 0.05) cathode materials were prepared by solid state reaction, then copper oxide was coated on the product. The structures, morphologies and electrochemical properties of the LiNi1/3Co1/3Mn1/3-xMg(x)O2 and CuO-coated LiNi1/3Co1/3Mn1/3-xMg(x)O2 were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and electrochemical tests. The results showed that the electrochemistry properties and cycle performance of magnesium doped LiNi1/3Co1/3Mn1/3O2 and CuO-coated LiNi1/3Co1/3Mn1/3-xMg(x)O2 materials were improved. The optimal doping content of Mg was x = 0.03 in the LiNi1/3Co1/3Mn1/3-xMg(x)O2 samples to achieve high discharge capacity and good cyclic stability, and the first discharge special capacity was 158.5 mAh/g at 0.2 C in the voltage of 2.5-4.3 V, then CuO-coated LiNi1/3Co1/3Mn1/3-0.03Mg0.03O2 was investigated. The electrode reaction reversibility and electronic conductivity were enhanced through Mg-doped and CuO-coated. 相似文献
13.
Lei-Lei Cui Xiao-Wei Miao Yu-Feng Song Wen-Ying Fang Hong-Bin Zhao Jian-Hui Fang 《先进制造进展(英文版)》2016,4(1):79-88
In this study, a lithium-rich layered 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 nanotube cathode synthesized by novel electrospinning is reported, and the effects of temperature on the electrochemical performance and morphologies are investigated. The crystal structure is characterized by X-ray diffraction patterns, and refined by two sets of diffraction data (R-3m and C2/m). Refined crystal structure is 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 composite. The inductively coupled plasma optical emission spectrometer and thermogravimetric and differential scanning calorimetry analysis measurement supply reference to optimize the calcination temperature and heat-treatment time. The morphology is characterized by scanning and highresolution transmission electron microscope techniques, and the micro-nanostructured hollow tubes of Li-rich 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 composite with outer diameter of 200-400 nm and the wall thickness of 50-80 nm are synthesized successfully. The electrochemical evaluation shows that 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 sintered at 800 ℃ for 8 h delivers the highest capacity of the first discharge capacity of 267.7 mAh/g between 2.5 V and 4.8 V at 0.1C and remains 183.3 mAh/g after 50 cycles. The electrospinning method with heat-treatment to get micro-nanostructured lithium-rich cathode shows promising application in lithium-ion batteries with stable electrochemical performance and higher C-rate performance for its shorter Li ions transfer channels and stable designed structure. 相似文献
14.
通过流变相辅助高温固相碳热还原法及碳酸共沉淀法合成了LiFePO4/C复合材料及三元系锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2。将二者按一定比例经强力搅拌混合均匀,获得均匀的共混锂离子电池用正极材料。通过循环充放电测试、交流阻抗测试等研究了混合比例对混合材料电化学性能的影响。实验结果表明LiFePO4与LiNi1/3Co1/3Mn1/3O2通过混合,二者之间产生较强的协同作用,从而实现二者之间的优势互补。并且当混合比例为1∶2时,混合电极具有较好的低温性能、倍率性能及循环稳定性和较高的平均放电平台电压及比能量密度。 相似文献
15.
Z. C. Shao J. Guo Z. Zhao J. Xia M. Ma Y. Zhang 《Materials and Manufacturing Processes》2016,31(8):1004-1008
LiNi1/3Co1/3-xMn1/3O2 doped with Al2O3 (x = 0%, 2.5%, 5%, 10%) was synthesized by co-precipitation of Ni, Co, and Mn acetates. The influence of Al2O3 doping on structure and electrochemical performances of LiNi1/3Co1/3Mn1/3O2 was studied using X-ray diffraction (XRD) analysis, scanning electron microscopy, charge/discharge tester, and electrochemical workstation. It was found that the materials achieved the best electrochemical properties when x was 5%. The first discharge capacity was 156.3 mAh · g?1(0.1 C, 2.0–4.8 V), which was close to the un-doped sample (156.8 mAh · g?1). After 20 cycles, the capacity retention ratios at the C-ratios of 0.1C, 0.2C, and 0.5 C were 96.1%, 94.9%, and 89.4%, respectively, while the capacity retention ratios of the un-doped samples were only 92.6% (0.1 C), 91.8% (0.2 C), and 88.7% (0.5C). The alternating current impedance shows that the charge transfer in the electrode interface was the easiest when x was 5%. 相似文献