共查询到19条相似文献,搜索用时 62 毫秒
1.
提出了一种新的自适应特征子空间跟踪算法,该算法通过计算跟踪目标的似然来自适应调整模型更新的权重,以减小更新过程中样本误差积累导致的模型漂移.同时,跟踪算法利用多视角贝叶斯理论框架进行多视角的信息融合,并对跟踪模型进行分块处理和更新,以提高跟踪精确度.仿真结果表明,本算法比对比算法的跟踪误差更小,并能够更好地解决目标遮挡和形变等问题,从而得到精确、高效的跟踪结果. 相似文献
2.
3.
空间直方图融合了目标的灰度分布信息和灰度的空间分布信息,比传统的灰度直方图更具有目标鉴别能力。为实现海杂波背景下稳健跟踪红外目标,本文在基于粒子滤波算法的红外目标跟踪系统框架中,将加权样本集表示红外目标的状态后验概率分布;采用简单的随机漂移模型表示系统状态模型;利用目标区域的空间直方图描述红外目标,其中通过核概率密度估计建立红外目标的灰度分布,然后统计灰度分布的空间信息建立空间直方图;通过空间直方图的相似度定义来建立系统观测概率模型,最终提出一种在海杂波背景下的基于空间直方图的粒子滤波红外目标跟踪算法。实 相似文献
4.
针对传统的红外目标跟踪算法对被跟踪目标出现形变、部分或全部遮挡后目标易发生丢失的问题, 提出一种新的红外目标跟踪算法。该算法采用双边滤波处理方式并结合中值光流法, 建立一种自适应红外目标模型, 以达到准确、稳定跟踪目标的目的。实验结果表明, 该算法能够有效跟踪变形或遮挡目标, 且实时性强, 准确率高, 鲁棒性好。 相似文献
5.
针对传统的红外目标跟踪算法对被跟踪目标出现形变、部分或全部遮挡后目标易发生丢失的问题,提出一种新的红外目标跟踪算法。该算法采用双边滤波处理方式并结合中值光流法,建立一种自适应红外目标模型,以达到准确、稳定跟踪目标的目的。实验结果表明,该算法能够有效跟踪变形或遮挡目标,且实时性强,准确率高,鲁棒性好。 相似文献
6.
针对红外弱小目标跟踪过程中背景复杂、目标过小导致检测困难以及跟踪不连续的问题,提出一种基于粒子滤波的鲁棒红外弱小目标跟踪方法。首先,考虑弱小目标位置、灰度以及目标量化直方图等特征,建立目标状态以及量测模型。根据量测各分量相互独立的特性,将量测相应分量的多特征似然函数集成于粒子滤波的框架中对低信噪比下的弱小目标状态进行自适应更新,改善由漏检引起的跟踪不连续问题。最后,采用平滑算法提升目标在运动学特征上的精度。仿真实验表明,所提算法能有效跟踪复杂背景下的红外弱小目标。 相似文献
7.
8.
子空间模型下的仿射不变目标跟踪 总被引:4,自引:4,他引:0
针对目标跟踪过程中目标可能出现的快速变化和严重遮挡等问题,提出了一种基于新的子空间表示的目标跟踪算法。采用距离不变量对尺度不变特征变换(SIFT)特征点匹配对进行提纯。用提纯后的特征点匹配对,通过线性拟合得到仿射变化参数。在粒子滤波的理论框架下,采用快速的迭代算法,建立目标的主分量(PCA)子空间表示,结合计算得到的仿射变化参数,构造有效的目标观测模型完成跟踪。同时,采用在线学习的方法对SIFT特征点和PCA子空间进行定时更新。大量实验表明,提出的算法能快速有效地完成对姿态和形状剧烈变化的目标的精确跟踪。 相似文献
9.
10.
基于粒子滤波的红外目标跟踪 总被引:29,自引:3,他引:29
粒子滤波(Partic le F ilter)是一种处理非线性和非高斯动态系统状态估计的有效技术.提出了一种基于粒子滤波的红外目标稳健跟踪新方法.在粒子滤波理论框架下,红外目标的状态后验概率分布用加权随机样本集表示,通过这些随机样本的Bayesian迭代进化实现红外目标的跟踪.系统状态转移模型选择为简单的二阶自回归模型,并自适应地确定系统噪声方差.红外目标的描述利用目标区域的灰度分布,该灰度分布通过核概率密度估计建立.通过计算参考目标的灰度分布和目标样本的灰度分布之间的Bhattacharyya距离,建立系统观测概率模型.实验结果表明该方法是有效的和稳健的. 相似文献
11.
12.
粒子滤波算法是一种基于贝叶斯估计的蒙特卡罗方法,适用于非线性非高斯系统的分析,被广泛应用于跟踪、定位等问题的研究中。为了解决粒子滤波算法在重采样后,丧失粒子多样性的问题,本文在粒子滤波算法的重采样步骤后,加入了马尔可夫链蒙特卡罗(Markov Chain Monte Carlo,简称MCMC)移动步骤,增加粒子的多样性。利用粒子滤波算法和MCMC粒子滤波算法对目标跟踪问题进行了仿真,并且通过分析仿真实验结果,比较了两种算法的性能,结果说明加入MCMC粒子滤波算法的性能优于粒子滤波算法。 相似文献
13.
14.
15.
This article deals with the problem of maneuvering target tracking which results in a mixed linear/non-linear model estimation problem.For maneuvering tracking system,extended Kalman filter (EKF) or particle filter (PF) is traditionally used to estimate the states.In this article,marginalized particle filter (MPF) is presented for application in a mixed linear/non-linear model estimation problem.MPF is a combination of Kalman filter (KF) and PF.So it holds both advantage of them and can be used for mixed linear/non-linear substructure,where the conditionally linear states are estimated using KF and the nonlinear states are estimated using PF.Simulation results show that MPF guarantees the estimation accuracy and alleviates the potential computational burden problem compared with PF and EKF in maneuvering target tracking application. 相似文献
16.
17.
18.
19.
基于卡尔曼粒子滤波的目标跟踪算法 总被引:1,自引:0,他引:1
目标跟踪在计算机视觉领域有着重要的应用。文中在对运动目标跟踪算法进行研究之后,应用卡尔曼粒子滤波算法进行运动目标的跟踪,同时利用Matlab 对卡尔曼滤波算法、粒子滤波算法及卡尔曼粒子滤波算法进行了实验仿真。实验结果表明,运用卡尔曼粒子滤波算法能够更快、更准确地对运动目标进行跟踪,可将其广泛应用于目标跟踪中。 相似文献