共查询到20条相似文献,搜索用时 93 毫秒
1.
《现代电子技术》2017,(3)
为克服传统BP神经网络在运算过程的不足,提出一种基于高维粒子群算法的神经网络优化方法。通过在高维PSO算法中引入随机变化的加速常数来获得最优权值,对BP神经网络进行优化和训练,再将优化好的高维BP神经网络运用到交通事件自动检测中,通过检测训练算法,并对训练后的数据进行分类测试,把分类测试的结果与传统BP神经网络和经典事件检测算法比较。结果显示,经过优化后的高维粒子群BP神经网络的检测率、算法性能均优于BP神经网络算法和经典算法,其中97,50个测试样本中仅有2个测试样本与应该达到的数值不一致,其他样本都满足测试要求,并且平均优化测试时间是传统BP神经网络检测时间的一半,因此,优化后的BP神经网络算法的性能十分优越。 相似文献
2.
3.
为了提高汽轮机诊断系统的诊断速度与精度,提出了将量子粒子群算法和BP神经网络相结合的故障诊断方法。用量子粒子群算法来训练网络的权值和阈值,再将优化后的权值和阈值代入BP网络,进行故障诊断。实例证明,它是一种高效,可靠的诊断方法。 相似文献
4.
5.
6.
彩信业务是一项重要的移动增值业务,但当前运营商的彩信运营却缺乏有效的系统支撑。文章重点研究了一种数据挖掘方法——BP神经网络——在彩信运营支撑中的应用,提出了混沌粒子群算法,并在此基础上改进了BP神经网络预测模型以用于彩信业务预测。 相似文献
7.
8.
9.
10.
11.
12.
提出一种用新型的进化学习算法训练的小波神经网络(WNN).这种新型的进化学习算法是基于粒子群算法(PSO)和共轭下降法(CG)提出的.以往,将粒子群算法用于神经网络的训练一般是可行的.因为粒子群算法相比于其他的优化算法,具有相对简单的结构和快速的收敛速度,然而,由于粒子的搜索坍塌速度过快而导致粒子停滞这种潜在的危险.粒子的持续停滞使搜索结果很难达到全局最优,甚至会陷入局部最优.为了克服粒子群算法缺点提出了改进的混合算法.通过对KDD 99数据集的实验表明,利用新型混合算法训练的小波神经网络对于异常检测具有很高的异常检测率并且又较低的误判率.可见,该方法对于网络异常检测是有效的. 相似文献
13.
在研究现有定位算法的基础上,针对基于接收信号强度指示(RSSI)定位模型中的参数易受环境影响等问题,提出了一种新型的粒子群优化(PSO)算法与后向传播(BP)神经网络相结合的算法.BP网络算法权值的修正依赖于非线性梯度值,易形成局部极值,同时学习次数较多,需先通过粒子群算法进行优化.为了提高定位精度,首先采用速度常量法滤波处理,然后通过改进的混合优化算法对BP神经网络初始权值和阈值进行优化,并分析算法的性能.试验中隐层节点个数采用试错法,从12到19变化,以确定合适数目.实验结果表明,与一般加权算法和传统BP算法相比,改进的混合优化算法可大幅改善测距误差对定位误差的影响,同时可使25 m内最小定位误差小于0.27 m. 相似文献
14.
15.
基于粒子群算法的车间作业调度问题 总被引:1,自引:0,他引:1
通过对车间调度问题的描述,针对传统算法寻优效率低的弱点,提出了一种基于粒子群算法的车间作业调度问题的解决方案.对粒子群算法的基本原理进行了阐述,并对粒子群算法的编码、参数的选择以及解码进行了研究,以最小化最大流程时间作为评价算法的性能指标,将其用于编程求解典型调度问题.仿真结果表明,粒子群算法在求解车间作业调度的应用上是十分有效的. 相似文献
16.
为了更好地控制激光铣削的质量,建立了激光铣削质量和铣削层参数的神经网络模型.针对神经网络易陷入局部极小值的缺点,提出混沌搜索的自适应变异粒子群优化算法(AMPSO)获得神经网络最佳参数,建立了AMPSO-BP激光铣削质量预测模型.最后以某种材料的激光铣削质量预测为例,将文中所提算法与PSO-BP、BP神经网络预测结果相... 相似文献
17.
为提升激光熔覆修复技术的性能,提出激光熔覆修复技术参数模拟优化方法.通过分析激光熔覆技术工作原理及类型,确定激光熔覆修复技术参数.确定激光熔覆修复技术参数,引入BP神经网络方法,构建熔覆层形貌和激光熔覆修复参数之间的模型预测.采用粒子群优化算法,优化构建的激光熔覆修复参数预测模型,实现激光熔覆修复技术参数模拟优化.仿真... 相似文献
18.
19.